
Categorical logic from a categorical point of view

Michael Shulman

DRAFT for AARMS Summer School 2016
Version of July 28, 2016

2

ii

Contents

Preface i

0 Introduction 3
0.1 Appetizer: inverses in group objects 3
0.2 On syntax and free objects . 8
0.3 On type theory and category theory 12
0.4 Expectations of the reader . 16

1 Unary type theories 19
1.1 Posets . 19
1.2 Categories . 23

1.2.1 Primitive cuts . 24
1.2.2 Cut admissibility . 29

1.3 Meet-semilattices . 39
1.3.1 Sequent calculus for meet-semilattices 40
1.3.2 Natural deduction for meet-semilattices 44

1.4 Categories with products . 47
1.5 Categories with coproducts . 56
1.6 Universal properties and modularity 61
1.7 Presentations and theories . 63

1.7.1 Group presentations . 64
1.7.2 Category presentations . 66
1.7.3 ×-presentations . 68
1.7.4 Theories . 75

2 Simple type theories 85
2.1 Towards multicategories . 85
2.2 Introduction to multicategories 89
2.3 Multiposets and monoidal posets 93

2.3.1 Multiposets . 93
2.3.2 Sequent calculus for monoidal posets 95
2.3.3 Natural deduction for monoidal posets 99

2.4 Multicategories and monoidal categories 100
2.4.1 Multicategories . 101

1

2 CONTENTS

2.4.2 Monoidal categories . 106
2.5 Adding products and coproducts 110
2.6 Some generalized multicategories 114
2.7 Intuitionistic logic . 120

2.7.1 S-monoidal lattices . 120
2.7.2 Heyting algebras . 124
2.7.3 Natural deduction and logic 127

2.8 Simply typed λ-calculus . 135
2.9 Finite-product theories . 142
2.10 Symmetric monoidal categories 145

3 Classical type theories 153
3.1 Classical logic . 153
3.2 Polycategories and linear logic . 153
3.3 Props and symmetric monoidal categories 153

4 First-order logic 155
4.1 Predicate logic . 155

4.1.1 Structural rules and simple rules 156
4.1.2 The universal quantifier 159
4.1.3 The existential quantifier 161
4.1.4 Equality . 162
4.1.5 First-order theories . 164

4.2 First-order hyperdoctrines . 170
4.3 Hyperdoctrines of subobjects . 181

4.3.1 Horn hyperdoctrines from finite limits 181
4.3.2 Regular categories . 182
4.3.3 Coherent categories . 188
4.3.4 Heyting categories . 189

4.4 Finite-limit theories . 192
4.5 Indexed monoidal categories . 192

5 Higher-order logic 201

6 Dependent type theory 203

A Deductive systems 205
A.1 Trees and free algebras . 205
A.2 Indexed trees . 207
A.3 Free algebras with axioms . 208
A.4 Rules and deductive systems . 211
A.5 Terms . 212
A.6 Variable binding and α-equivalence 216

Chapter 0

Introduction

In this optional chapter I will attempt to motivate and describe the discipline of
categorical logic for the newcomer, and also locate this book within the ecosystem
thereof for the expert. Nothing herein is required for reading the rest of the
book; but I hope that it may serve some purpose nevertheless.

0.1 Appetizer: inverses in group objects

In this section we consider an extended example. We do not expect the reader
to understand it very deeply, but we hope it will give some motivation for what
follows, as well as a taste of the power and flexibility of categorical logic as a
tool for category theory.

Our example will consist of several varations on the following theorem:

Theorem 0.1.1. If a monoid has inverses (hence is a group), then those inverses
are unique.

When “monoid” and “group” have their usual meaning, namely sets equipped
with structure, the proof is easy. For any x, if y and z are both two-sided inverse
of x, then we have

y = y · e = y · (x · z) = (y · x) · z = e · z = z (0.1.2)

However, the theorem is true much more generally than this. We consider first
the case of monoid/group objects in a category with products. A monoid object
is an object A together with maps m : A × A → A and e : 1 → A satisfying
associativity and unitality axioms:

A×A×A 1×m
//

m×1

��

A×A

m

��

A×A
m

// A

A
(1,e)

//

1
""

A×A

m

��

A
(e,1)
oo

1
||

A

(0.1.3)

3

4 CHAPTER 0. INTRODUCTION

A×A

1×∆
&&

π1 // A

(1,e) &&

1

��

A×A×A
1×1×j

''

A×A
m

""
A

(i,1,j)
//

(i,1)

EE

(1,j)

��

A×A×A
1×m

88

m×1

&&

A

A×A×A
i×1×1

77

A×A
m

<<

A×A
∆×1

88

π2

// A

(e,1)
88

1

LL

Figure 1: Uniqueness of inverses by diagram chasing

An inverse operator for a monoid object is a map i : A → A such that the
following diagrams commute:

A×A i×1
// A×A

m

��

A

∆

@@

∆
��

! // 1
e // A

A×A
1×i

// A×A
m

@@ (0.1.4)

The internalized claim, then, is that any two inverse operators for a monoid
object are equal. A standard category-theoretic proof would be to suppose i
and j are both inverse operators and draw a large commutative diagram such
as that shown in Figure 1. Here the composite around the top is equal to i,
the composite around the bottom is equal to j, and all the internal polygons
commute either by one of the monoid axioms, the inverse axiom for i or j, or
the universal property of products. (We encourage the reader to verify this.)

While there is a certain beauty to Figure 1, it takes considerable effort to
write it down and arrange it in such a pleasing form (as opposed to a horrid
mess on scratch paper), let alone typeset it prettily. And this is really a fairly
simple fact about monoids; for more complicated theorems, the complexity of
the resulting diagrams grows accordingly (see Exercises 0.1.4 and 0.1.5).

Nevertheless, there is a sense in which Figure 1 is obtained algorithmically
from the simple proof (0.1.2). Specifically, each expression in (0.1.2) corresponds
to one or more paths through Figure 1, and each equality in (0.1.2) corresponds

0.1. APPETIZER: INVERSES IN GROUP OBJECTS 5

to a commuting polygon in Figure 1.1 With experience, one can learn to do such
translations without much effort, at least in simple cases. However, if it really is
an algorithm, we shouldn’t have to re-do it on a case-by-case basis at all; we
should be able to prove a single general “meta-theorem” and then appeal to it
whenever we want to. This is the goal of categorical logic.

Specifically, the type theory for categories with products allows us to replace
Figure 1 by an argument that looks almost the same as (0.1.2). The morphisms
m and e are represented in this logic by the notations

x : A, y : A ` x · y : A ` e : A.

Don’t worry if this notation doesn’t make a whole lot of sense yet. The symbol
` (called a “turnstile”) is the logic version of a morphism arrow →, and the
entire notation is called a sequent or a judgment. The fact that m is a morphism
A×A→ A is indicated by the fact that A appears twice to the left of ` and once
to the right; the comma “,” in between x : A and y : A represents the product
×, and the variables x, y are there so that we have a good notation “x · y” for
the morphism m. In particular, the notation x : A, y : A ` x · y : A should be
bracketed as

((x : A), (y : A)) ` ((x · y) : A).

Similarly, the associativity, unit, and inverse axioms are indicated by the notations

x : A, y : A, z : A ` (x · y) · z = x · (y · z) : A

x : A ` x · e = x : A x : A ` e · x = x : A

x : A ` x · i(x) = e : A x : A ` i(x) · x = e : A

Now (0.1.2) can be essentially copied in this notation:

x : A ` i(x) = i(x) · e = i(x) · (x · j(x)) = (i(x) · x) · j(x) = e · j(x) = j(x) : A.

The essential point is that the notation looks set-theoretic, with “variables”
representing “elements”, and yet (as we will see) its formal structure is such that
it can be interpreted into any category with products. Therefore, writing the
proof in this way yields automatically a proof of the general theorem that any
two inverse operators for a monoid object in a category with products are equal.

Before leaving this appetizer section, we mention some further generalizations
of this result. While type theory allows us to use set-like notation to prove facts
about any category with finite products, the allowable notation is fairly limited,
essentially restricting us to algebraic calculations with variables. However, if
our category has more structure, then we can “internalize” more set-theoretic
arguments.

1Not every polygon in Figure 1 corresponds to anything in (0.1.2), though: the “universal
property” quadrilaterals on the left are “invisible” algebraically. This is why we said each
expression corresponds to “one or more” paths: y · (x · z) and (y · x) · z don’t care which route
we take from A to A×A×A.

6 CHAPTER 0. INTRODUCTION

As an example, note that for ordinary monoids in sets, the uniqueness of
inverses (0.1.2) is expressed “pointwise” rather than in terms of inverse-assigning
operators. In other words, for each element x ∈ A, if x has two two-sided inverses
y and z, then y = z, regardless of whether any other elements of A have inverses.
If we think hard enough, we can express this diagrammatically in terms of the
category Set. Consider the following two sets:

B =
{

(x, y, z) ∈ A3
∣∣ xy = e, yx = e, xz = e, zx = e

}
C =

{
(y, z) ∈ A2

∣∣ y = z
}

In other words, B is the set of elements x equipped with two inverses, and C is
the set of pairs of equal elements. Then the uniqueness of pointwise inverses can
be expressed by saying there is a commutative diagram

B

��

// C

��

A3
π23

// A2

where the vertical arrows are inclusions and the lower horizontal arrow projects
to the second and third components.

This is a statement that makes sense for a monoid object A in any category
with finite limits. The object C can be constructed categorically as the equalizer
of the two projections A×A⇒ A (which is in fact isomorphic to A itself), while
the object B is a “joint equalizer” of four parallel pairs, one of which is

A×A
m

""
A×A×A

π12

88

!
&&

A

1

e

<<

and the others are similar. We can then try to prove, in this generality, that
there is a commutative square as above. We can do this by manipulating arrows,
or by appealing to the Yoneda lemma, but we can also use a type theory for
categories with finite limits. This is a syntax like the type theory for categories
with finite products, but which also allows us to hypothesize equalities. The
judgment in question is

x : A, y : A, z : A, (x · y = e), (y ·x = e), (x · z = e), (z ·x = e) ` (y = z). (0.1.5)

As before, the comma binds the most loosely, so this should be read as

((x : A), (y : A), (z : A), (x · y = e), (y · x = e), (x · z = e), (z · x = e)) ` (y = z).

0.1. APPETIZER: INVERSES IN GROUP OBJECTS 7

We can prove this by set-like equational reasoning, essentially just as before.
The “interpretation machine” then produces from this a morphism B → C, for
the objects B and C constructed above.

Next, note that in the category Set, the uniqueness of inverses ensures that if
every element x ∈ A has an inverse, then there is a function i : A→ A assigning
inverses — even without using the axiom of choice. (If we define functions as
sets of ordered pairs, as is usual in set-theoretic foundations, we could take
i = { (x, y) | xy = e }; the pointwise uniqueness ensures that this is indeed a
function.) This fact can be expressed in the type theory of an elementary topos.
We postpone the definition of a topos until later; for now we just remark that
its structure allows both sides of the turnstile ` to contain logical formulas such
as ∃x.∀y.φ(x, y) rather than just elements and equalities. In this language we
can state and prove the following:

∀x:A.∃y:A. ((x ·y = e)∧ (y ·x = e)) ` ∃i:AA.∀x:A. ((x · i(x) = e)∧ (i(x) ·x = e))

As before, the proof is essentially exactly like the usual set-theoretic one. More-
over, the interpretation machine allows us to actually extract an “inverse operator”
morphism in the topos from this proof. Such a result can also be stated and
proved using arrows and commutative diagrams, but as the theorems get more
complicated, the translation gets more tedious to do by hand, and the advantage
of type-theoretic notation becomes greater.

This concludes our “appetizer”; I hope it has given you a taste of what
categorical logic looks like, and what it can do for category theory. In chapter 1
we will rewind back to the beginning and start with very simple type theories
(even simpler than the ones we used in this section). Before we actually start
doing type theory, however, let me prepare the ground a little by explaining how,
in principle, the sort of “interpretation machine” mentioned above can work.

Exercises

Exercise 0.1.1. Prove that in a cartesian monoidal category, every object is a
bimonoid in a unique way.

Exercise 0.1.2. Show that the category of cocommutative comonoids in a sym-
metric monoidal category inherits a monoidal structure, and that this monoidal
structure is cartesian.

Exercise 0.1.3. Prove, using arrows and commutative diagrams, that any two
antipodes for a bimonoid (not necessarily commutative or cocommutative) are
equal.

Exercise 0.1.4. Suppose A is a set with two monoid structures (m1, e) and
(m2, e) having the same unit element e, and satisfying the “interchange law”
m1(m2(x, y),m2(z, w)) = m2(m1(x, z),m1(y, w)). Then we have

m1(x, y) = m1(m2(x, e),m2(e, y)) = m2(m1(x, e),m1(e, y)) = m2(x, y)

and also

m1(x, y) = m1(m2(e, x),m2(y, e)) = m2(m1(e, y),m1(x, e)) = m2(y, x)

8 CHAPTER 0. INTRODUCTION

so that m1 = m2 and both are commutative. This is called the Eckmann-Hilton
argument. State and prove an analogous fact about objects in any category with
finite products having two monoid structures satisfying an “interchange law”.
(In Exercises 1.7.3 and 2.9.1 you will re-do this proof using internal logic for
comparison.)

Exercise 0.1.5. A “distributive near-ring” is like a ring but without the assump-
tion that addition is commutative; thus we have a monoid structure (·, 1) and a
group structure (+, 0) such that · distributes over + on both sides.

(a) Prove that every distributive near-ring is actually a ring. (For this reason,
in an unqualified “near-ring” only one side of distributivity is assumed.)

(b) Define a “distributive near-ring object” in a category with finite products.
Try for a little while to prove that any such is actually a “ring object”,
at least until you can see how much work it would be. In Exercises 1.7.4
and 2.9.1 you will prove this using type theory for comparison.

0.2 On syntax and free objects

The way that type theory allows us to prove things about categorical structures
is by providing a syntactic presentation of free objects. To explain what this
means, let’s consider an example that (apparently) has very little to do with type
theory or category theory. The following is a standard result from elementary
group theory.

Theorem 0.2.1. Recall that for elements g, h of a group G, the conjugation
of h by g is defined by hg = ghg−1. For any g, h, k we have hg kg = (hk)g.

Proof.
hg kg = (ghg−1)(gkg−1) = ghkg−1 = (hk)g

Now this “proof” is not, technically, a complete proof from the usual axioms of
a group. In fact, even the definition of conjugation is not, technically, meaningful,
because the usual axioms of a group only involve a way to multiply two elements,
not three. Technically, we should choose a parenthesization and write, say, hg =
(gh)g−1; and then use the associativity and unit axioms explicitly throughout
the above proof:

hgkg = ((gh)g−1)((gk)g−1) = (g(hg−1))((gk)g−1) = ((g(hg−1))(gk))g−1

= (g((hg−1)(gk)))g−1 = (g(h(g−1(gk))))g−1 = (g(h((g−1g)k)))g−1

= (g(h(ek)))g−1 = (g(hk))g−1 = (hk)g

Of course, this would be horrific, so no one ever does it. But what justifies not
doing it?

Normally, if mathematicians think about this sort of question at all, they
would probably say that technically the extra steps have to be there, but we

0.2. ON SYNTAX AND FREE OBJECTS 9

omit them because the reader could fill them in him- or herself. There’s nothing
intrinsically wrong with this (although it does start to become problematic when
formalizing mathematics in a computer, since the computer can’t fill in the steps
itself unless some programmer takes the time to teach it exactly how).

Interestingly, however, there is a way to make the nice short proof of Theo-
rem 0.2.1 completely rigorous on its own. Consider the free group F3 generated
by three elements g, h, k. Then the elements of F3 can be represented by finite
strings composed of the letters g, h, k and their formal inverses, in which no
letter is ever adjacent to its inverse (we call these reduced words). In par-
ticular, ghg−1 and gkg−1 and ghkg−1 are all elements of F3, and the product
(ghg−1)(gkg−1) is equal to ghkg−1 by definition of multiplication in F3 (con-
catenate strings and cancel any elements adjacent to their inverses). Thus, the
calculation in the proof of Theorem 0.2.1 makes literal sense as a statement
about elements of F3.

Of course, we want the theorem to be true about any three elements of
any group, not just the generators of F3. But if we have three such elements
g′, h′, k′ ∈ G, the freeness of F3 means there is a unique group homomorphism
ω : F3 → G such that ω(g) = g′, ω(h) = h′, and ω(k) = k′. Since ω is a
group homomorphism, it preserves conjugation and multiplication. Thus, since
Theorem 0.2.1 is true about g, h, k ∈ F3, it must also be true about g′, h′, k′ ∈ G.

This is the basic method of categorical logic: we do a calculation in a free
structure, then map it everywhere else using the unique morphisms determined
by the universal property of that free structure. Of course, not much is gained
by this in our current fairly trivial example; in particular, no one would ever
consider teaching undergraduates group theory that way! But as we will see, the
same principle applies in much more complicated situations, and tends to get
more and more useful the more complicated the structures and proofs are.

It’s natural, however, to wonder why such an approach gains us anything at
all ! Why would it be any easier to prove something in a free group than in an
arbitrary group? It almost seems as if it must be false by definition: anything
that’s true in a free group must be true in all groups, precisely by freeness, so
any proof that works in a free group must work in any group.

This “false by definition” argument is almost valid. It is valid if the only thing
we know about free groups is their universal property. The crucial ingredient
in our simplified proof of Theorem 0.2.1, however, is that we knew more about
free groups than their universal property: we had an explicit description of their
elements as reduced words. Thus, we were able to make use of this knowledge
to give a proof in a free group that wouldn’t work in an arbitrary group.

I want to emphasize that this explicit description of a free group is not a
trivial consequence of its universal property. There is a “tautological” way to
construct free groups, but it produces a quite different description:

(a) Start with the generators.

(b) Successively apply the operations appearing in the definition (binary multi-
plication, the unary operation of inversion, and the nullary operation of the

10 CHAPTER 0. INTRODUCTION

identity element) without reference to the axioms. This yields expressions
such as (gh)−1(k−1(kg)).

(c) Define an equivalence relation on these expressions to be the smallest one
that forces all the axioms to hold and is respected by all the operations. Thus,
for instance, (gh)−1(k−1(kg)) would be identified with (h−1((g−1k−1)k))g,
and also (gh)−1g, and also h−1.

(d) The quotient of this equivalence relation is the free group on our chosen
generators.

This sort of method works to construct free algebras for any “algebraic
theory”; but it would not help us justify the short proof of Theorem 0.2.1. The
tautological construction produces a free group whose elements are equivalence
classes, without any way to choose canonical representatives; in contrast to our
explicit description with words, which involved no equivalence classes at all.
Moreover, there are other algebraic theories, such as abelian groups, for which
there are no canonical representatives for elements of free algebras; so something
relatively special to do with groups in particular is happening here.

Roughly the same thing is also true for categorical logic: for many kinds of
categorical structure, “something special” happens, enabling us to give an explicit
description of free structures, and thereby simplify many proofs. Moreover, the
“something special” that happens is more or less the same thing that happens in
the case of groups; so it is worth explaining the latter a bit more.

How do we prove that the free group on a set X can be presented using
reduced words, given that it is not the tautological construction? The very first
thing we need to do is prove that the set of reduced words, call it FX, is a group.
To multiply two reduced words w1 and w2, we have to concatenate them, but
then “cancel all the element-inverse pairs that appear in the middle”. A very
formal way to describe this process is by induction.

Consider the second word w2. If it has length 0 (i.e. it is the empty word),
then we can define the product w1 · w2 to be just w1. Otherwise, w2 must end
with either a generator or its inverse. Suppose it ends with a generator, so that
w2 = w′2g for some g ∈ X (we leave the other case to the reader). Then w′2 is
shorter than w2, so by induction on its length, we may suppose that we have
defined how to multiply w1 by w′2, obtaining a new word w1 · w′2.

Now, since we hope multiplication will be associative, and we expect w2

to actually be the product w′2 · g (not just the concatenation), we should have
w1 · w2 = w1 · (w′2 · g) = (w1 · w′2) · g. Thus, since we have inductively defined
w1 · w′2, we only need to multiply it on the right by g. We would like to just
concatenate g on the end, but this might not result in a reduced word, if it
happens that w1 · w′2 ends with g−1. (How could this happen, given that w′2
doesn’t end with g (since w2 = w′2g is reduced)? The simplest case is if w1 ends
with g−1 and w′2 is empty. More generally, all of w′2 could get canceled by part
of w1 to expose a g−1 inside w1.)

Thus, we have to inspect w1 · w′2. If it ends with g−1, say w1 · w′2 = w3g
−1,

then we define the product w1 · w2 to be w3. Otherwise, the concatenated word

0.2. ON SYNTAX AND FREE OBJECTS 11

(w1 · w′2)g is reduced, so we can define it to be w1 · w2.

This completes our formal definition of multiplication of reduced words. The
reason for writing out the proof in such a pedantic way is that essentially the
same method works for the rest of the argument. For instance, how do we prove
that multiplication is associative? Given three reduced words w1, w2, and w3,
we induct on the length of w3. If it is empty, then (w1 ·w2) ·w3 and w1 · (w2 ·w3)
are both w1 · w2 by definition. Otherwise, w3 = w′3g (or w3 = w′3g

−1), and
we can use the definitions of multiplication and an inductive hypothesis that
(w1 · w2) · w′3 and w1 · (w2 · w′3).

Similarly, how do we extend a function ω : X → G to a group homomorphism
ω : FX → G? Each reduced word is either empty, in which case it must go to
the identity of G, or of the form wg for some g ∈ X, in which case it must go to
the product ω(w) · ω(g) in G. And we prove that ω(w1 ·w2) = ω(w1) · ω(w2) by

— you guessed it — induction on the length of w2.

This fairly simple proof actually displays many of the characteristics of
analogous proofs about type theories that we will encounter throughout the book.
The construction of multiplication in FX is a simple form of cut admissibility,
and the proof that FX is the free group on X provides a prototype for the
“initiality theorems” that we will prove for all of our type theories. (This is the
“something special” I referred to earlier that happens for groups, and also for
categories, but not for abelian groups.) But the most important thing to take
away is the overall picture: we gave a concrete description of a free structure that
was not obvious from its universal property, enabling us to write proofs in the free
structure that would not make sense in an arbitrary structure, but nevertheless
imply conclusions about arbitrary structures by the universal property.

Now you may be able to look back at §0.1 and have a slightly better idea of
what is happening. The funny type-theoretic syntax such as x : A, y : A ` x·y : A
is a particular explicit presentation of (in this case) the category with products
“freely generated by a monoid with two inverse operators”. This is a category with
products, say FI, containing a monoid object A with two inverse operators, with
the property that given any other category with productsM and a monoid object
B therein with two inverse operators, there is a unique functor FI →M mapping
A and its inverse operators to B and its inverse operators. Our calculation in
this type theory showed that the two inverse operators of A are equal; therefore,
so must those of B, for any M and B.

I emphasize again that we will make all of this more precise later on, so it is
not necessary to understand deeply right now. But the idea is unfamiliar enough
to many mathematicians that you may need to let it wash over you for a while
before coming to understand it. (Certainly that was my own experience with
learning type theory.) I also hope that seeing this glimpse of the bigger picture
will motivate the reader to make it through the (sometimes rather technical)
details of subsequent chapters.

Remark 0.2.2. It is worth noting that type theory is not the only syntax for
free structures in category theory; probably the best-known alternative syntax
is string diagrams (see e.g. [JS91, Sel11]). Type theory and string diagrams

12 CHAPTER 0. INTRODUCTION

use the same idea of giving a concrete presentation of a free object that is
easier to reason about, but the particular presentations used are quite different.
Type-theoretic presentations are typically characterized by cut-admissibility
and similar theorems, whereas string diagrams use topological structures and
deformations. Each has strengths and weaknesses; some proofs are easy in type
theory and difficult with string diagrams, while for other proofs the opposite is
true.

In fact, the usual way of reasoning in category theory (or any other subject),
in which we speak explicitly about objects, arrows, and so on, can be interpreted
to be simply making use of the “tautological” presentation of a free structure
rather than some fancier one. In this case, of course, there is nothing practical
to be gained by such a viewpoint; but it may help to “relate the new with the
old”.

Exercises

Exercise 0.2.1. Write out the remaining details in the proof that FX is the free
group generated by the set X.

0.3 On type theory and category theory

So much for the big picture of categorical logic. However, since there are
many other introductions to categorical logic (a non-exhaustive list could in-
clude [MR77, LS88, Jac99, Gol84, Joh02]), it seems appropriate to say a few
words about what distinguishes this one. These words may not make very much
sense to the beginner who doesn’t yet know what we are talking about, but they
may help to orient the expert, and as the beginner becomes more expert he or
she can return to them later on.

Our perspective is very much that of the category theorist: our primary goal
is to use type theory as a convenient syntax to prove things about categories,
by presenting free structures in a particular way. (It can be tempting for the
category theorist to want to generalize away from free structures to arbitrary ones,
but this temptation should be resisted; see Remark 1.2.14.) In particular, this
means that we are not interested in aspects of type theory such as computability,
canonicity, proof search, cut-elimination, focusing, and so on for their own sake.
However, at the same time we recognize their importance for type theory as
a subject in its own right, which suggests that they should not be ignored by
the category theorist. If nothing else, the category theorist will encounter these
words when speaking to type theorists, and so it is advantageous to have at least
a passing familiarity with them.

In fact, our perspective is that the esoteric-sounding notion of cut admissibility
(and its various other incarnations such as cut-elimination or admissibility of
substitution) essentially defines what we mean by a “type theory” (as opposed to
some other syntax for free structures, such as string diagrams or the tautological
one). Of course this is not literally true; a more careful statement would be that

0.3. ON TYPE THEORY AND CATEGORY THEORY 13

type theories with cut elimination are those that exhibit the most behavior most
characteristic of type theories. (Jean-Yves Girard remarked that “a logic without
cut-elimination is like a car without an engine.”) A “type theory without cut
elimination” can still yield explicit presentations of free structures, but will tend
to lack some of the characteristic features of categorical logic.

So what is this mysterious cut-admissibility, from a categorical perspective?
We saw a simple example of it for groups in §0.2. In general, cut admissibility
says that the morphisms in a free categorical structure can be presented without
explicit reference to composition. This is a bit of a cheat, because as we will see,
in fact what we do is to build just enough “implicit” reference to composition into
our rules to ensure that we no longer need to talk about composition explicitly.
However, this does not make the process trivial, and it can still yield valuable
results.

As a simple example of nontriviality, if an arrow is constructed by applying
a universal property, then that property automatically determines some of the
composites of that arrow. For instance, a pairing 〈f, g〉 : X → A × B must
compose with the projections π1 : A × B → A and π2 : A × B → B to give f
and g respectively. Thus, these composites do not need to be “built in” by hand.

Another interesting fact about cut-elimination is that the composition it
produces is automatically associative (and unital), despite the fact that we do not
apparently put associativity in anywhere (even implicitly). Došen [Doš99] uses
this to “explain” or “justify” the definition of category (and other basic category-
theoretic notions) in terms of cut-elimination. Of course, for our intended
audience of category theorists it is cut-elimination, rather than associativity,
that requires explanation and justification; but nevertheless the relationship
is intriguing. There is undoubtedly a connection with the “something special”
possessed by groups and categories but not by magmas or abelian groups.

Both of these facts are instances of an underlying general principle: by
presenting a free categorical structure without explicit reference to composition,
we are free to then define its composition as an operation on its already-existing
morphisms, and we can choose this definition so as to ensure that various desirable
properties hold automatically. This eliminates or reduces the need for quotienting
by equivalence relations in the presentation of a free structure. Put differently, a
type theory isolates a class of canonical forms for morphisms. In simple cases
every morphism has exactly one canonical form, so that no equivalence relation
on the canonical forms is needed. In more complicated situations we still need
an equivalence relation, but the necessary equivalence relation is often simpler
and/or more intuitive than that involved in more tautological presentations of
free structures.

Another characteristic advantage of categorical logic is that it enables us to
use “set-like” reasoning to prove things about arbitrary categories, by means
of “term calculi” associated to its presentations of free structures. (This is
what we exhibited several examples of in §0.1.) Such syntax is not actually
a characteristic of all type theories, but of a large class of common ones that
are sometimes known as “natural deduction” theories (although this usage of
the term is much broader than its traditional denotation). Roughly speaking,

14 CHAPTER 0. INTRODUCTION

natural deduction theories “build in composition” on the left side only, which
from a categorical perspective suggests that they are talking about representable
presheaves, i.e. describing a category by way of its Yoneda embedding. The
characteristic “set-like” syntax of natural deduction theories then corresponds to
the point of view that considers an arbitrary morphism x : X → A in a category
to be a “generalized element” of A.

Despite the usefulness of terms, we will maintain and emphasize throughout
the principle that terms should be just a convenient notation for derivation
trees. This perspective has many advantages. For instance, it means that a
(constructive) proof of cut-elimination is already a definition of substitution
into terms; it is not necessary to separately define a notion of “substitution
into terms” and then prove that this separately defined notion of substitution
is admissible. It also deals quite nicely with the problems of α-equivalence and
bound variable renaming: as an operation on derivations, substitution doesn’t
need to care about “whether a free variable is going to get captured”; the point
is just that when we choose a term to represent the substituted derivation we
have to accord with the general rules for how terms are assigned to derivations.

Most importantly, however, adhering to the “terms are derivations” principle
greatly simplifies the proofs of the central “initiality theorems” (that the type
theory really does present a free category with appropriate structure), since
we can define a map out of the type theory by induction on derivations and
deduce immediately that it is also defined on terms. If the “terms are derivations”
principle is broken, then one generally ends up wanting to induct on derivations
anyway, and then having to prove laboriously that the resulting “operation” on
terms is independent of their derivations.

Informally, the “terms are derivations” principle means that the meaning
of a notation can be evaluated simply on the basis of the notation as written,
without having to guess at the thought processes of the person who wrote it down.
That is, the meaning of “2 + 3” should not depend on whether we obtained it
by substituting x = 2 into x + 3 or by substituting y = 3 into 2 + y. This is
obviously a desirable feature, and arguably even a necessary one if our “notation”
is to be worthy of the name. Moreover, this “freedom from mind-reading” should
hold by definition of the meaning of our notation: the meaning of 2 + 3 should be
defined on its own without reference to x+ 3 and 2 +y, with the fact that we can
obtain it from the latter expressions by substitution being a later observation.

This principle demands in particular that substitution be an “admissible rule”
rather than a primitive one (that is, an operation defined on terms/derivations,
rather than one of the rules for producing them). For similar reasons, we present
our type theories so as to ensure that as many structural rules as possible are
admissible rather than primitive: not only cut/substitution, but also exchange,
contraction, and weakening. The meaning of x+ y should not depend on which
of the variables x and y happens to have been mentioned first in the course of a
proof.

Many introductions to type theory are somewhat vague about exactly how
these structural rules are to be imposed, especially for substructural theories
such as linear logic with exchange only. However, when we try to use type theory

0.3. ON TYPE THEORY AND CATEGORY THEORY 15

to present a free symmetric monoidal category (as opposed to a free symmetric
monoidal poset), we have to worry about the functoriality of the exchange rule,
which technically requires being explicit about exactly how exchange works. If
we make exchange admissible, then it is automatically functorial, just as making
substitution admissible gives associativity for free; this considerably simplifies
the theory. Having structural rules as primitive would also make the notation
quite tedious if we continued to adhere to the principle that terms are just a
notation for derivations.

In fact, it seems to me that much of the literature on categorical logic contains
gaps or even errors relating to these points. It is very tempting to prove the
initiality theorem by induction on derivations without realizing that by breaking
the “terms are derivations” principle one thereby incurs an obligation to prove
that the interpretation of a term is independent of its derivation. It is also very
tempting to include too many primitive rules, perhaps based on the thought
that if a rule is true anyway, it’s simpler to assume it than to have to prove it.
One way to break this habit is to think of primitive rules as the operations in an
algebraic theory for which we are interested in the free algebras: clearly if there
are too many operations, then the initial algebra will be too big.

Another unusual feature of our treatment is the emphasis on multicategories
(of various generalized sorts, including also the still more general “polycategories”
and their generalizations). We start with ordinary multicategories since they
are simplest categorically, which forces us to consider “substructural” type
theories such as linear logic at least briefly. But soon we move on to cartesian
multicategories, which correspond to the more familiar kind of type theory with
exchange, contraction, and weakening; these are a very natural structure, but
are hard to find in the category-theoretic literature.

Although multicategories have been present in categorical logic from close to
the beginnings of both (Lambek’s original definition of multicategory [Lam69] was
motivated by logical considerations), they are rarely mentioned in introductions
to the subject. One concrete advantage of using multicategories is a more
direct correspondence between the type theory and the category theory: type
theory distinguishes between a sequent A,B ` C and a sequent A × B ` C
(even though they are bijectively related), so it seems natural to work with a
categorical structure that also distinguishes between morphisms (A,B) → C
and A×B → C.

However, the correspondence and motivation goes deeper than that. We may
ask why type theory distinguishes these two kinds of sequents? We will discuss
this in more detail in §2.1, but the short answer is that “it makes cut-elimination
work”. More specifically, it enables us to formulate type theory in such a way that
each rule refers to at most one type former, so that we can “commute these rules
past each other” in the proof of cut-elimination. Moreover, including sequents
such as A,B ` C allows us to describe certain operations in a type-theoretic
style that would not otherwise be possible, such as a monoidal tensor product. A
type theorist speaks of this in terms of deciding on the judgmental structure first
(including “structural rules”) and then defining the connectives to “internalize”
various aspects of that structure.

16 CHAPTER 0. INTRODUCTION

From a categorical point of view, the move to (generalized) multicategories
has the feature that it gives things universal properties. For instance, the tensor
product in a monoidal category has no universal property, but the tensor product
in a multicategory does. In general, from a well-behaved 2-monad T we can define
a notion of “T -multicategory” [Bur71, Lei04, Her01, CS10] in which T -algebra
structure acquires a universal property (specifically, T is replaced by a lax- or
colax-idempotent 2-monad with the same algebras). In type theoretic language,
the move to T -multicategories corresponds to including the desired operations
in the judgmental structure. The fact that the T -operations then have universal
properties is what enables us to write down the usual sort of type-theoretic
left/right or introduction/elimination rules for them.

Making this correspondence explicit is helpful for many reasons. Pedagogi-
cally, it can help the category theorist, who believes in universal properties, to
understand why type theories are formulated the way they are. It also makes
the “initiality theorems” more modular: first we model the judgmental structure
with a multicategory, and then we add more type formers corresponding to
objects with various universal properties. It can even be helpful from a purely
type-theoretic perspective, suggesting more systematic ways to formulate cut
admissibility theorems (see e.g. Theorem 2.3.5 and Lemma 2.7.2). Finally, it
provides a guide for new applications of categorical logic: when seeking a cat-
egorical structure to model a given type theory, we should look for a kind of
multicategory corresponding to its judgments; while when seeking an internal
logic for a categorical structure, we should represent it using universal proper-
ties in some kind of multicategory, from which we can extract an appropriate
judgmental structure.

These facts about cut-elimination and multicategories have surely been known
in some form to experts for a long time, but I am not aware of a clear presentation
of them for the beginner coming from a category-theoretic background. They
are not strictly necessary if one wants simply to use type theory for internal
reasoning about categories, and there are plenty of good introductions that
take a geodesic route to that application. However, I believe that they yield
a deeper understanding of the type/category correspondence; and they are
especially valuable when it comes to designing type theories that correspond to
new categorical structures (or vice versa).

0.4 Expectations of the reader

I will not assume that the reader has any acquaintance with type theory, or any
interest in it apart from its uses for category theory. However, because one of my
goals is to help the reader become familiar with the lingo and concerns of type
theorists, I will sometimes include a little more detail than is strictly necessary
for categorical applications. The reader should feel free to skip over these brief
digressions.

It is possible that my zeal to explain all the aspects of type theory that can be
puzzling to the category theorist has made this book a little more “encyclopedic”

0.4. EXPECTATIONS OF THE READER 17

than would be ideal for a first introduction to the subject. I hope that it will still
be of use to the newcomer; but if you haven’t had any prior exposure to type
theory or categorical logic, you may want to supplement it with other readings
as well.

Another reason for supplementing is that I have intentionally minimized the
space devoted to category theory. Of course, we are interested in type theory
as a language for categories, and I have tried to include enough examples to
illustrate its usefulness. But our focus will be on type theories and how they
correspond to categories, not on the categorical structures themselves. For basic
notions of category theory, see e.g. [ML98, Awo06, McL92, Lei14]. To learn more
about the multicategories that appear in chapter 2, I recommend [Lei04, CS10].
And for the indexed categories and “logical” types of categories appearing in
chapters 4 to 6 one can consult [MLM94, Joh77, Joh02, Jac99].

I have endeavored to include a reasonable number of exercises of varying
difficulty; these are placed at the end of most sections, and then compiled again
for ease of reference at the end of each chapter. As always, doing exercises is
important (perhaps even essential) for coming to understand a subject. But
whether or not you plan to do the exercises, I highly recommend at least reading
all the exercises as part of each section, and spending at least a few seconds
thinking about how one might do them. A number of ideas are introduced in
exercises and then come back again later in the text.

18 CHAPTER 0. INTRODUCTION

Chapter 1

Unary type theories

We begin our study of type theories and their categorical counterparts with a
class of very simple cases that we will call unary type theories. (This terminology
is not standard in the literature.) On the type-theoretic side the word “unary”
indicates that there is only one type on each side of a sequent A ` B. On the
categorical side it means, roughly, that we deal with categories rather than any
kind of multicategory. In later chapters we will generalize away from this in
various ways.

In some ways the unary case is fairly trivial, but for that very reason it serves
as a good place to become familiar with basic notions of type theory and how
they correspond to category theory.1 Some of these notions and remarks may
seem very pedantic in the unary case, but will become more important later on.
I encourage the reader new to type theory to skim over any such parts of this
chapter, and then return to it after some acquaintance with later chapters.

1.1 Posets

We start with the simplest sort of categories: those in which each hom-set has
at most one element. These are well-known to be equivalent to preordered sets,
where the existence of an arrow A→ B is regarded as the assertion that A ≤ B.
I will abusively call them posets, although traditionally posets (partially ordered
sets) also satisfy the antisymmetry axiom (if A ≤ B and B ≤ A then A = B).
From a category-theoretic perspective, antisymmetry means asking a category
to be skeletal, which is both unnatural and pointless. Conveniently, posets also
correspond to the simplest version of logic, namely propositional logic, as we will
see in §2.7.

From a category-theoretic perspective, the question we are concerned with
is the following. Suppose we have some objects in a poset, and some ordering

1I am indebted to Dan Licata [LS16] for the insight that unary type theories can be easier
but still interesting.

19

20 CHAPTER 1. UNARY TYPE THEORIES

relations between them. For instance, we might have

A ≤ B A ≤ C D ≤ A B ≤ E D ≤ C

Now we ask, given two of these objects — say, D and E — is it necessarily the
case that D ≤ E? In other words, is it the case in any poset containing objects
A,B,C,D,E satisfying the given relations that D ≤ E? In this example, the
answer is yes, because we have D ≤ A and A ≤ B and B ≤ E, so by transitivity
D ≤ E. More generally, we would like a method to answer all possible questions
of this sort.

There is an elegant categorical way to do this based on the notion of free
structure (analogously to the situation for free groups we considered in §0.2).
Namely, consider the category Poset of posets, and also the category RelGr
of relational graphs, by which I mean sets equipped with an arbitrary binary
relation. There is a forgetful functor U : Poset → RelGr, which has a left
adjoint FPoset.

Now, the abstract information about “five objects A,B,C,D,E satisfying
five given relations” can be regarded as an object G of RelGr, and to give five
such objects satisfying those relations in a poset P is to give a map G → UP
in RelGr. By the adjunction, therefore, this is equivalent to giving a map
FPosetG → P in Poset. Therefore, a given inequality such as A ≤ E will hold
in all posets if and only if it holds in the particular, universal poset FPosetG
freely generated by the assumed data.

Thus, to answer all such questions at once, it suffices to give a concrete
presentation of the free poset FPosetG generated by a relational graph G. In
this simple case, it is easy to give an explicit description of FPoset: it is the
reflexive-transitive closure. But since soon we will be trying to generalize vastly,
we want instead a general method to describe free objects. From our current
perspective, this is the role of type theory.

As noted in §0.1, when we move into type theory we use the symbol ` instead
of → or ≤. Type theory is concerned with (hypothetical) judgments, which
(roughly speaking) are syntactic gizmos of the form “Γ ` ∆”, where Γ and ∆ are
syntactic gadgets whose specific nature is determined by the specific type theory
under consideration (and, thus, by the particular kind of categories we care
about). We call Γ the antecedent or context, and ∆ the consequent or co-context.
In our simple case of posets, the judgments are simply

A ` B

where A and B are objects of our (putative) poset; such a judgment represents
the relation A ≤ B. In general, the categorical view is that a hypothetical
judgment represents a sort of morphism (or, as we will see later, a sort of object)
in some sort of categorical structure.

In addition to a class of judgments, a type theory consists of a collection of
rules by which we can operate on such judgments. Each rule can be thought of
as a partial n-ary operation on the set of possible judgments for some n (usually
a finite natural number), taking in n judgments (its premises) that satisfy some

1.1. POSETS 21

compatibility conditions and producing an output judgment (its conclusion).
We generally write a rule in the form

J1 J2 · · · Jn
J

with the premises above the line and the conclusion below. A rule with n = 0
is sometimes called an axiom. The categorical view is that we have a given
“starting” set of judgments representing some objects and putative morphisms in
the “underlying data” of a categorical structure, and the closure of this set under
application of the rules yields the objects and morphisms in the free structure it
generates.

We will attempt to make all of this precise in Appendix A, which the reader
is free to consult now. However, it is probably more illuminating at the moment
to bring it back down to earth in our very simple example. Since the properties
distinguishing a poset are reflexivity and transitivity, we have two rules:

A ` A
A ` B B ` C

A ` C

in which A,B,C represent arbitrary objects. In other words, the first says that
for any object A we have a 0-ary rule whose conclusion is A ` A, while the
second says that for any objects A,B,C we have a 2-ary rule whose premises
are A ` B and B ` C (that is, any two judgments of which the consequent of
the first is the antecedent of the second) and whose conclusion is A ` C. We
will refer to the pair of these two rules as the free type theory of posets.

Hopefully it makes sense that we can construct the reflexive-transitive closure
of a relational graph by expressing its relations in this funny syntax and then
closing up under these two rules, since they are exactly reflexivity and transitivity.
Categorically, of course, that means identities and composition. In type theory
the composition/transitivity rule is often called cut, and plays a unique role, as
we will see later.

In the example we started from,

A ≤ B A ≤ C D ≤ A B ≤ E D ≤ C

we have the two instances of the transitivity rule

D ` A A ` B
D ` B

D ` B B ` E
D ` E

allowing us to conclude D ` E. When applying multiple rules in sequence to
reach a conclusion, it is customary to write them in a “tree” structure like so:

D ` A A ` B
D ` B B ` E

D ` E

Such a tree is called a derivation. The way to typeset rules and derivations in
LATEX is with the mathpartir package; the above diagram was produced with

22 CHAPTER 1. UNARY TYPE THEORIES

\inferrule*{

\inferrule*{D\types A \\ A\types B}{D\types B} \\

B\types E

}{

D\types E

}

Note that mathpartir has only recently made it into standard distributions of
LATEX, so if you have an older system you may need to download it manually.

Formally speaking, what we have observed is the following initiality theorem.

Theorem 1.1.1. For any relational graph G, the free poset FPosetG that it
generates is has the same objects and its morphisms are the judgments that are
derivable from G in free type theory of posets.

Proof. In the preceding discussion we assumed it as known that the free poset
on a relational graph is its reflexive-transitive closure, which makes this theorem
more or less obvious. However, it is worth also presenting an explicit proof that
does not assume this, since same pattern of proof will reappear many times for
more complicated type theories where we don’t know the answer in advance.

Thus, let us define FPosetG as stated in the theorem. The reflexivity and
transitivity rules imply that FPosetG is in fact a poset. Now suppose A is any
other poset and P : G → A is a map of relational graphs. The objects of FPosetG
are the same as those of G, so P extends uniquely to a map on underlying
sets FPosetG → A. Thus it suffices to show that this map is order-preserving,
i.e. that if A ` B is derivable from G in the free type theory of posets, then
P (A) ≤ P (B).

For this purpose we induct on the derivation of A ` B. There are multiple
ways to phrase such an induction. One is to define the height of a derivation
to be the number of rules appearing in it, and then induct on the height of the
derivation of A ` B.

(a) If there are no rules at all, then A ` B must come from a relation A ≤ B
in G; hence P (A) ≤ P (B) since P is a map of relational graphs.

(b) If there are n > 0 rules, then consider the last rule.

(i) If it is the identity rule A ` A, then P (A) ≤ P (A) in A since A is a
poset and hence reflexive.

(ii) Finally, if it is the transitivity rule, then each of its premises A ` B and
B ` C must have a derivation with strictly smaller height, so by the
(strong) inductive hypothesis we have P (A) ≤ P (B) and P (B) ≤ P (C).
Since A is a poset and hence transitive, we have P (A) ≤ P (C).

A different way to phrase such an induction, which is more flexible and more
type-theoretic in character, uses what is called structural induction. This means
that rather than introduce the auxiliary notion of “height” of a derivation, we
apply a general principle that to prove that a property P holds of all derivations,

1.2. CATEGORIES 23

it suffices to show for each rule that if P holds of the premises then it holds
of the conclusion. We can also define operations on derivations by structural
recursion, meaning that it suffices to define what happens to the conclusion of
each rule assuming that we have already defined what happens to the premises.
Structural induction and recursion can be justified formally by set-theoretic
arguments — see Appendix A for some general statements. However, intuitively
they implicit in what is meant by saying that “derivations are what we obtain
by applying rules one by one,” just as ordinary mathematical induction is
implicit in saying that “the natural numbers are what we obtain by starting with
zero and constructing successors one by one”, and constructive type-theoretic
foundations for mathematics often take them as axiomatic. From now on we
will use structural induction and recursion on derivations in all type theories
without further comment.

However, it is proved, Theorem 1.1.1 enables us to reach conclusions about
arbitrary posets by deriving judgments in type theory. In our present trivial
case this is not very useful, but as we will see it becomes more useful for more
complicated structures.

Another way to express the initiality theorem is to incorporate G into the
rules. Given a relational graph G, we define the type theory of posets under
G to be the free type theory of posets together with a 0-ary rule

A ` B

for any relation A ≤ B in G. Now a derivation can be written without any
“leaves” at the top, such as

D ` A A ` B
D ` B B ` E

D ` E

Clearly this produces the same judgments; thus the initiality theorem can also
be expressed as follows.

Theorem 1.1.2. For any relational graph G, the free poset FPosetG that it
generates is has the same objects and its morphisms are the derivable judgments
in the type theory of posets under G.

We can extract from this our first general statement about categorical logic:
it is a syntax for generating free categorical structures using derivations from
rules. The reader may be forgiven at this time for wondering what the point is;
but bear with us and things will get less trivial.

1.2 Categories

Let’s now generalize from posets to categories. The relevant adjunction is now
between categories Cat and directed graphs Gr; the latter are sets G of “vertices”

24 CHAPTER 1. UNARY TYPE THEORIES

equipped with a set G(A,B) of “edges” for each x, y ∈ G. Thus, we hope to
generate the free category FCatG on a directed graph G type-theoretically.

Our judgments A ` B will still represent morphisms from A to B, but now of
course there can be more than one such morphism. Thus, to specify a particular
morphism, we need more information than the simple derivability of a judgment
A ` B. Näıvely, the first thing we might try is to identify this extra information
with the derivation of such a judgment, i.e. with the tree of rules that were
applied to reach it. This makes the most sense if we take the approach of
Theorem 1.1.2 rather than Theorem 1.1.1, so that distinct edges f, g ∈ G(A,B)
can be regarded as distinct rules

A ` B
f

A ` B
g

Thus, for instance, if we have also h ∈ G(B,C), the distinct composites h ◦ g
and h ◦ f will be represented by the distinct derivations

B ` C
h

A ` B
g

A ` C
◦

B ` C
h

A ` B
f

A ` C
◦

Note that when we have distinct rules with the same premises and conclusion,
we have to label them so that we can tell which is being applied. For consistency,
we begin labeling the identity and composition rules too, with ◦ and id.

Of course, this näıve approach founders on the fact that composition in a
category is supposed to be associative and unital, since the two composites
h ◦ (g ◦ f) and (h ◦ g) ◦ f , which ought to be equal, nevertheless correspond to
distinct derivations:

C ` D
h

B ` C
g

A ` B
f

A ` C
◦

A ` D
◦

C ` D
h

B ` C
g

B ` D
◦

A ` B
f

A ` D
◦

(1.2.1)

Thus, with this type theory we don’t get the free category on G, but rather some
free category-like structure that lacks associativity and unitality. There are two
ways to deal with this problem; we consider them in turn.

1.2.1 Primitive cuts

The first solution is to simply quotient by an equivalence relation. Our equivalence
relation will have to identify the two derivations in (1.2.1), and also the similar

1.2. CATEGORIES 25

pairs for identities:

A ` A
id

A ` B
A ` B

◦ ≡ A ` B

A ` B B ` B
id

A ` B
◦ ≡ A ` B

Our equivalence relation must also be a “congruence for the tree-construction of
derivations”, meaning that these identifications can be made anywhere in the
middle of a long derivation, such as:

D1

...

A ` A
id

D2

...

A ` B
A ` B

◦

...
D3

≡

D1

...

D2

...

A ` B
...

D3

We will also have to close it up under reflexivity, symmetry, and transitivity to
make an equivalence relation.

Of course, it quickly becomes tedious to draw such derivations, so it is
convenient to adopt a more succinct syntax for them. We begin by labeling each
judgment with a one-dimensional syntactic representation of its derivation tree,
such as:

g : (B ` C)
g

idB : (B ` B)
id

f : (A ` B)
f

(idB ◦B f) : (A ` B)
◦

(g ◦B (idB ◦B f)) : (A ` C)
◦

These labels are called terms. Of course, in this case they are none other than
the usual notation for composition and identities. Formally, this means the rules
are now:

f ∈ G(A,B)

f : (A ` B)

A ∈ G
idA : (A ` B)

φ : (A ` B) ψ : (B ` C)

ψ ◦B φ : (A ` C)

Here φ, ψ denote arbitrary terms, and if they contain ◦’s themselves then we put
parentheses around them, as in the example above. Now the generators of our
equivalence relation look even more familiar:

χ ◦C (ψ ◦B φ) ≡ (χ ◦C ψ) ◦B φ
φ ◦A idA ≡ φ
idB ◦B φ ≡ φ

26 CHAPTER 1. UNARY TYPE THEORIES

Again φ, ψ, χ denote arbitrary terms, corresponding to the fact that arbitrary
derivations can appear at the top of our identified trees; and similarly these
identifications can also happen anywhere inside another term, so that for instance

k ◦C (h ◦B (g ◦A f)) ≡ k ◦C ((h ◦B g) ◦A f).

Of course, we only impose these relations when they make sense. We can
describe the conditions under which this happens using rules for a secondary
judgment φ ≡ ψ : (A ` B). The rules for our generating equalities are

φ : (A ` B) ψ : (B ` C) χ : (C ` D)

(χ ◦C (ψ ◦B φ) ≡ (χ ◦C ψ) ◦B φ) : (A ` D)

φ : (A ` B)

(φ ◦ idA ≡ φ) : (A ` B)

φ : (A ` B)

(idB ◦ φ ≡ φ) : (A ` B)

and we must also have rules ensuring that we have an equivalence relation and a
congruence:

φ : (A ` B)

(φ ≡ φ) : (A ` B)

(φ ≡ ψ) : (A ` B)

(ψ ≡ φ) : (A ` B)

(φ ≡ ψ) : (A ` B) (ψ ≡ χ) : (A ` B)

(φ ≡ χ) : (A ` B)

(φ1 ≡ ψ1) : (A ` B) (φ2 ≡ ψ2) : (B ` C)

(φ2 ◦B φ1 ≡ ψ2 ◦B ψ1) : (A ` C)

The last of these is sufficient, in our simple case, to ensure we have a congruence;
in general we would have to have one such equality rule for each basic rule of
the theory (except for those with no premises, like id).

Many of our type theories will involve such an equality judgment, for which
we always use the notation ≡, and the need for the equivalence relation and
congruence rules is always the same. Thus, we generally decline to mention them,
stating only the “interesting” generating equalities for the theory. A general
framework for such equality judgments is described in §A.3.

In our case, when the rules for ◦ and id are augmented by these rules for ≡,
and we also add axioms for the edges of a given directed graph G, we call the
result the cut-ful type theory for categories under G. It may seem obvious
that this produces the free category on G, but again we write it out carefully to
help ourselves get used to the patterns. In particular, we want to emphasize the
role played by the following lemma:

Lemma 1.2.2. If φ : (A ` B) is derivable in the cut-ful type theory for categories
under G, then it has a unique derivation.

Proof. The point is that the terms produced by all the rules have disjoint forms.
If φ is of the form “f” for some f ∈ G(A,B), then it can only be derived by the

1.2. CATEGORIES 27

first rule applied to f . If it is of the form “idA”, then it can only be derived by
the identity rule applied to A. Finally, if it is of the form “ψ ◦C φ” it can only
be derived by the composition rule applied to φ : (A ` C) and ψ : (C ` B), and
by induction the latter judgments also have unique derivations.

In other words, the terms (before we impose the relation ≡ on them) really
are simply one-dimensional representations of derivations, as we intended. Not
everything that “looks like a term” represents a derivation, but if it does, it
represents a unique one. (We have not precisely defined exactly what “looks
like a term”, but it should make intuitive sense; a formal definition is given in
Appendix A.) It is easy to see that conversely every derivation is represented
by a unique term, since the above rules for annotating derivations by terms are
deterministic.

The above simple inductive proof of Lemma 1.2.2 depends in particular on the
presence of the subscript on the symbol ◦. Similar annotations will reappear in
many subsequent theories. In the present case we could omit these annotations
and still reconstruct a unique derivation, because we know the domain and
codomain of all the generating morphisms in G. However, this would require
a more “global” analysis of the term; whereas a clean inductive proof such as
the above has the advantage that it can be regarded as a recursively defined
algorithm.

We call this algorithm type-checking : it starts with a putative sequent
with term φ : (A ` B) and, by following the algorithm of Lemma 1.2.2 until
it terminates or encounters a contradiction, either produces a derivation of
that sequent or decides that it has no such derivation. This algorithm can be
programmed into a computer, and arguably represents reasonably faithfully what
human mathematicians do when reading syntax. With that said, when writing
for a human reader (and even an electronic reader whose programmer has been
clever enough) it is often possible to leave off annotations of this sort without
fear of ambiguity, and we will frequently do so.

Not all type theories have the property that terms uniquely determine their
derivations by a direct inductive algorithm; but those that don’t tend to be
much more complicated to analyze and prove the initiality theorem for. We will
call this property terms are derivations or type-checking is possible, and
we will always attempt to construct our type theories so that it holds.

Remark 1.2.3. Technically, there is either more or less happening here than may
appear (depending on your point of view). A term as we write it on the page
is really just a string of symbols, whereas in the proof of Lemma 1.2.2 we have
assumed that a term such as “f ◦B (g ◦A h)” can uniquely be read as ◦B applied
to “f” and “g ◦A h”. This simple string of symbols could technically be regarded
as ◦A applied to “f ◦B (g” and “h)”, but of course that would make no sense
because those are not meaningful terms in their own right (in particular, they
contain unbalanced parentheses).

Thus, something more must be happening, and that something else is called
parsing a term. Human mathematicians do it instinctively without thinking;
electronic mathematicians have to be programmed to do it. In either case, the

28 CHAPTER 1. UNARY TYPE THEORIES

result of parsing a string of symbols is an “internal” representation (a mental
idea for humans, a data structure for computers) that generally has the form of
a tree, indicating the “outermost” operation as the root with its operands as
branches, and so on, for instance:

f ◦B (g ◦A h)

◦B

f ◦A

g h

Of course, this “internal” tree representation of a term is nothing but the
corresponding derivation flipped upside-down. So in that sense Lemma 1.2.2 is
actually saying less than one might think: the derivation tree is actually being
constructed by the silent step of parsing, while the type-checking algorithm
consists only of labeling the nodes of this tree by rules in a consistent manner.
We will not say much more about parsing, however; we trust the human reader
to do it on their own, and we trust programmers to have good algorithms for it.

Now we can prove the initiality theorem.

Theorem 1.2.4. The free category on a directed graph G has the same objects
as G, and its morphisms A→ B are the derivations of A ` B (or equivalently,
the terms φ such that φ : (A ` B) is derivable) in the cut-ful type theory for
categories under G, modulo the equivalence relation φ ≡ ψ : (A ` B).

Proof. Let FCatG be defined as described in the theorem; the identity and
composition rules give it the structure necessary to be a category, and the
transitivity and unitality relations make it a category.

Now suppose A is any category and ω : G → A is a map of directed graphs.
Then ω extends uniquely to the objects of FCatG, since they are the same as
those of G. But unlike the case of posets, we have to define our desired extension
ω on the morphisms of FCatG as well.

If φ : (A ` B) is derivable, then by Lemma 1.2.2 it has a unique derivation;
thus we can define ω(φ) by recursion on the derivation of φ. Of course, if
the derivation of φ ends with f ∈ G(A,B), then we define ω(φ) = ω(f); if it
ends with idA we define ω(φ) = idP (A); and if it ends with ψ ◦C χ we define
ω(φ) = ω(ψ) ◦ ω(χ).

We also have to show that this definition respects the equivalence relation ≡.
This is clear since A is a category; formally it would be another induction on
the derivations of ≡ judgments.

Finally, we have to show that this ω : FCatG → A is a functor. This follows
by definition of the category structure of FCatG and the action of ω on its
arrows.

Of course, once again very little seems to be happening; we are just using a
complicated funny syntax to build a free algebraic structure. (In fact, what we
are doing now is analogous to the “tautological construction” of free groups from

1.2. CATEGORIES 29

§0.2.) Therefore, it is the second way to deal with the problem of associativity
that is more interesting.

1.2.2 Cut admissibility

In this case what we do is remove the composition rule ◦ entirely ; instead we
“build (post)composition into the axioms”. That is, the only rule independent of
G is identities:

A ` A
id

while for every edge f ∈ G(A,B) we take the following rule:

X ` A
X ` B

f

for any X. Informally, one might say that we represent f by its “image under
the Yoneda embedding”.

Note that we have made a choice to build in postcomposition; we could also
have chosen to build in precomposition. In the current context, either choice
would work just as well; but later on we will see that there were reasons to
choose postcomposition here. We will call this the cut-free type theory for
categories under G.

In this theory, if we have f ∈ G(A,B), g ∈ G(B,C), and h ∈ G(C,D) there
is only one way to derive A ` D:

A ` A
id

A ` B
f

A ` C
g

A ` D
h

Thus, we no longer have to worry about distinguishing between h ◦ (g ◦ f) and
(h◦g)◦f . Of course, we have a new problem: if we are trying to build a category,
then we do need to be able to compose arrows! So we need the following theorem:

Theorem 1.2.5. If we have derivations of A ` B and B ` C in the cut-free
type theory for categories under G, then we can construct a derivation of A ` C.

Proof. We induct on the derivation of B ` C. If it ends with id, then it must
be that B = C; so our given derivation of A ` B is also a derivation of A ` C.
Otherwise, we must have some f ∈ G(D,C) and our derivation of B ` C ends
like this:

D
...

B ` D
B ` C

f

30 CHAPTER 1. UNARY TYPE THEORIES

In particular, it contains a derivation D of B ` D. Thus, by the inductive
hypothesis we have a derivation, say D ′, of A ` D. Now we can simply follow
this with the rule for f :

D ′

...

A ` D
A ` C

f

In type-theoretic lingo, Theorem 1.2.5 says that the cut rule is admissible
in the cut-free type theory for categories under G. In other words, although the
cut/composition rule

A ` B B ` C
A ` C

◦

is not part of the type theory as defined, it is nevertheless true that whenever we
have derivations of the premises of this rule, we can construct a derivation of its
conclusion.

Remark 1.2.6. This is what it means in general for a rule to be admissible:
it is not part of the theory as defined (that is, it is not one of the primitive
rules), but nevertheless if it were added to the theory it would not change the
set of derivable sequents.2 In between primitive and admissible rules there are
derivable rules: those that can be expanded out directly into a fragment of a
derivation in terms of the primitive rules. For instance, if we have f ∈ G(A,B)
and g ∈ G(B,C), then the left-hand rule below is derivable:

X ` A
X ` C

X ` A
X ` B

f

X ` C
g

because we can expand it out into the right-hand derivation in terms of the
primitive rules. Any derivable rule is admissible: if we have a derivation of X ` A
we can follow it with the f and g rules to obtain a derivation of X ` C. Note the
difference with the proof of cut-admissibility: here we do not need to modify the
given derivation, we only apply further primitive rules to its conclusion. (The
reader should beware, however, that the words “derivable” and “admissible” are
frequently misused.) We will return to this distinction in Remark 1.2.14.

Closely related to cut-admissibility is cut-elimination, which in our theory
takes the following form.

Theorem 1.2.7. Consider the cut-free type theory for categories under G with
the cut rule added as primitive. If A ` B has a derivation in this new theory,
then it also has a derivation in the cut-free theory.

2This terminology comes from the posetal case, where “derivability” is the important
concept. If we care about distinguishing between different derivations of the same sequent (to
represent multiple parallel morphsims in a category), then an admissibility theorem is better
regarded as an operation on derivations. We will return to this later on.

1.2. CATEGORIES 31

Proof. We induct on the derivation of A ` B. If it ends with id, it is already
cut-free. If it ends like this for some f ∈ G(C,B):

D
...

A ` C
A ` B

f

then by induction, A ` C has a cut-free derivation, to which we can apply the f
rule to obtain a cut-free derivation of A ` B. Finally, if it ends with the cut rule:

D1

...

A ` C

D2

...

C ` B
A ` B

cut

then by induction A ` C and C ` B have cut-free derivations, and thus by
Theorem 1.2.5 so does A ` B.

Note that cut-elimination is a fairly straightforward consequence of cut-
admissibility: the latter allows us to eliminate each cut one by one. This will
nearly always be true for our type theories, so we will usually just prove cut
admissibility and rarely remark on the cut-elimination theorem that follows from
it. On the other hand, cut admissibility is a special case of cut-elimination,
and sometimes people prove cut-elimination directly without explicitly using
cut-elimination as a lemma. Under this approach, the inductive step in cut-
admissibility is viewed instead as a step of “pushing cuts upwards” through a
derivation: given a derivation as on the left below in the theory with cut, we
transform it into the derivation on the right in which the cut is higher up.

D1

...

A ` B

D2

...

B ` C
B ` D

f

A ` D
cut

D1

...

A ` B

D2

...

B ` C
A ` C

cut

A ` D
f

Because our derivation trees are finite (or, more generally, well-founded) this
process must eventually terminate with all the cuts eliminated.

A more category-theoretic way to say what is going on is that the morphisms
in the free category on a directed graph G have an explicit description as finite
strings of composable edges in G. (This is analogous to the description of free
groups using reduced words in §0.2.) We have just given an inductive definition
of “finite string of composable edges”: there is a finite string (of length 0) from
A to A; and if we have such a string from X to A and an edge f ∈ G(A,B), we
can construct a string from X to B.

32 CHAPTER 1. UNARY TYPE THEORIES

We could prove the initiality theorem by appealing to this known fact about
free categories, but as before, we prefer to give a more explicit proof to illustrate
the patterns of type theory. For this purpose, it is convenient to first introduce
terms, as we did in the previous section for the cut-ful theory. We can do this
with terms directly constructed so that their parse tree will mirror the derivation
tree, for instance writing the rules as

idA : (A ` A)
id

φ : (X ` A)

f◦(φ) : (X ` B)
f

Then a term derivation and corresponding parse tree would look like

idA : (A ` A)
id

f◦(idA) : (A ` B)
f

g◦(f◦(idA)) : (A ` C)
g

h◦(g◦(f◦(idA))) : (A ` D)
h

h◦

g◦

f◦

idA

However, now there is another option available to us, which begins to show more
of the characteristic behavior of type-theoretic terms. Rather than describing
the entire judgment A ` B with a term, the way we did for the cut-ful theory,
we assign a formal variable such as x to the domain A, and then an expression
containing x to the codomain B. For the theory of plain categories that we are
working with here, the only possible expressions are repeated applications of
function symbols to the variable, such as h(g(f(x))). We write this as

x : A ` h(g(f(x))) : B

The identity and generator rules can now be written as

x : A ` x : A
id

x : X `M : A f ∈ G(A,B)

x : X ` f(M) : B
f

Here M denotes an arbitrary term, which will of course involve the variable x.
Thus, for instance, the composite of h, g, and f would be written like so:

x : A ` x : A
id

x : A ` f(x) : B
f

x : A ` g(f(x)) : C
g

x : A ` h(g(f(x))) : D
h

Of course, the term h(g(f(x))) has essentially the same parse tree as the term
h◦(g◦(f◦(idA))) shown above, so it can clearly represent the same derivation.
The main difference is that instead of idA we have the variable x representing
the identity rule.

1.2. CATEGORIES 33

This is our first encounter with how type theory permits a “set-like” syntax
when reasoning about arbitrary categorical structures. It is also one reason
why we chose to build in postcomposition rather than precomposition. If we
used precomposition instead, then the analogous syntax would be backwards:
we would have to represent f : A → B as f(u) : A ` u : B rather than
x : A ` f(x) : B. At a formal level, there would be little difference, but it feels
much more familiar to apply functions to variables than to co-apply functions
to co-variables. (We can still dualize at the level of the categorical models; we
already mentioned in §0.1 that we could apply the type theory of categories with
finite products to the opposite of the category of commutative rings.)

Now we observe that terms are still derivations in this theory.

Lemma 1.2.8. If x : X ` M : B is derivable in the cut-free type theory for
categories under G, then it has a unique derivation.

Proof. If M is the variable x, then the only possible derivation is id. And if
M = f(N), where f ∈ G(A,B), then it can only be obtained from the generator
rule for f applied to x : X ` N : A.

Note that the terms in this theory are simpler than those in the cut-ful
theory in that we don’t need the type subscripts on the composition operation
◦A. This is because each rule composes with only one generator f , and each
such generator “knows” its domain, so the premise of the rule is determined by
the conclusion.

Another difference between the two theories that instead of attaching a term
to the entire derivation such as (f ◦ g) : (A ` C), we now attach a variable to the
antecedent and a more complex term to the consequent. Really it is the pair of
both of these that plays the role played by the terms in §1.2.1; that is, we may
regard x : A `M : B as a notational variation of something like3 x.M : (A ` B),
and regard x.M as the real “term”. However, everyone always refers to the
non-variable part M as the term, and the separation into variable (or, later,
variables) and term is responsible for much of the characteristic behavior of
terms in type theory.

In particular, unlike in the cut-ful theory, it is no longer true that each
derivation determines a unique term (or more precisely, variable-term pair),
because we have to choose a name for the variable. As written on the page,
the judgments x : A ` f(x) : B and y : A ` f(y) : B are distinct; but they
represent the same derivation (if we remove the term annotations) and the same
morphism:

x : A ` x : A
id

x : A ` f(x) : B
f

y : A ` y : A
id

y : A ` f(y) : B
f

This should not really be overly worrisome. Recall that we regard terms
as merely notation for derivations, which we introduced in order to talk about

3The period used for the pairing here is a “variable binder”; we will return to it later on.

34 CHAPTER 1. UNARY TYPE THEORIES

derivations (and, in particular, to describe an equivalence relation ≡ on them) in
a more concise and readable way. Thus, we are really just saying that we have
more than one notation for the same thing, which is of course commonplace in
mathematics. For instance, saying “let f(x) = x2” and “let f(t) = t2” are two
notationally different ways to define exactly the same function R→ R.

To be sure, there is a different viewpoint on type theory that takes terms as
primary objects rather than derivations, regarding the derivability of a judgment
such as x : X `M : B as a property of the term M , rather than regarding (as
we do) the term M as a notation for a particular derivation of X ` B. One
reason for this is that terms are (by design) much more concise than derivations,
and so if we want to represent type theory in a computer then it is attractive to
use terms as the basic objects rather than derivations.

We will not follow this route. However, even though we maintain the viewpoint
that derivations are primary, there are reasons to think a bit more carefully
about the issue of variable names. Most of these reasons will not arise until
chapter 2, so we will not say very much about the issue here; but we will at least
introduce in our present simple context the two basic ways of dealing with the
ambiguity in variable names.

The first method is to decide, once and for all, on a single variable name
(say, x) to use for all our derivations. Then we cannot write y : A ` f(y) : B
at all, and so every derivation does determine a unique term. We call this the
de Bruijn method. (In theories with multiple variables this method becomes
more complicated; we will return to this in chapter 2.)

The second method is to allow arbitrary choices of variable names (from
some standard alphabet), but be aware of the operation of variable renaming.
We say that two terms are α-equivalent if they differ by renaming the variable;
thus we can say that a derivation determines a unique α-equivalence class of
terms. (In theories with “variable binding”, the definition of α-equivalence is
likewise more complicated; we will return to this in §1.5 and discuss it formally
in Appendix A.)

Of these two methods, the de Bruijn method is theoretically cleaner, and
better for implementation in a computer, but tends to detract from readability
for human mathematicians. We will return to discuss these two methods when
we have more complicated theories where there is more interesting to say about
them. For now, we continue to use arbitrary variables, remembering that the
particular choice of variable name is irrelevant, that derivations are primary, and
that terms are just a convenient notation for derivations.

Now that we have such a convenient notation, we can observe that The-
orem 1.2.5 is not just a statement about derivability. Indeed, the proof that
we gave is “constructive”, in the strong sense that it actually determines an
algorithm for transforming a pair of derivations of A ` B and B ` C into a
derivation of A ` C. The inductive nature of the proof means that this algo-
rithm is recursive. And because terms uniquely represent derivations (modulo
α-equivalence), it can equivalently be considered an operation on derivable term
judgments.

For instance, suppose we start with x : A ` f(x) : B and y : B ` h(g(y)) : C;

1.2. CATEGORIES 35

then the construction proceeds in the following steps.

� The second derivation ends with an application of h, so we apply the
inductive hypothesis to x : A ` f(x) : B and y : B ` g(y) : D.

� Now the second derivation begins with an application of g, so we recurse
again on x : A ` f(x) : B and and y : B ` y : B.

� This time the second derivation is just the identity rule, so the result is the
first given derivation x : A ` f(x) : B.

� Backing out of the induction one step, we apply g to this result to get
x : A ` g(f(x)) : D.

� Finally, backing out one more time, we apply h to the previous result to get
x : A ` h(g(f(x))) : C.

Intuitively, the result h(g(f(x))) has been obtained by substituting the term f(x)
for the variable y in the term h(g(y)). Thus, we refer to the operation defined
by Theorem 1.2.5 as substitution, and sometimes state Theorem 1.2.5 and its
analogues as substitution is admissible. In general, given x : A `M : B and
y : B ` N : C we denote the substitution of M for y in N by N [M/y] (although
unfortunately one also finds other notations in the literature; including, quite
confusingly, [M/y]N and N [y/M]).

The operation N [M/y] this is “meta-notation”: the square brackets are not
part of the syntax of terms, instead they denote an operation on terms. The
proof of Theorem 1.2.5 defines the notion of substitution recursively in the
following way:

y[M/y] = M (1.2.9)

f(N)[M/y] = f(N [M/y]) (1.2.10)

When terms are regarded as objects of study in their own right, rather than just
as notations for derivations, it is common to define substitution as an operation
on terms first, and then to state Theorem 1.2.5 as “if x : A ` M : B and
y : B ` N : C are derivable, then so is x : A ` N [M/y] : C”. We instead
consider Theorem 1.2.5 as fundamentally an operation on derivations, which we
call “substitution” especially when representing it using term notation.

Note, though, that because a derivation is represented by a term together
with a variable for the antecedent (that is, x : X ` M : B is a notational
variant of x.M : (X ` B)), technically this operation on derivations has to
specify the variables too. The notation N [M/y] represents only the term part;
so the definitions (1.2.9) and (1.2.10) are only complete when combined with
the statement that the variable of N [M/y] is the same as that of M .

Remark 1.2.11. Substitution is already a place where the use of distinct named
variables (and hence α-equivalence) makes the exposition substantially clearer
for a human reader. We even teach our calculus students (or, at least, the
author does) that when composing functions f and g, it is clearer to use different

36 CHAPTER 1. UNARY TYPE THEORIES

variables for the two functions, writing y = f(x) but z = g(y) and then plugging
f(x) in place of y in the second equation to get z = g(f(x)). It is possible to get
away with using the same variable for the inputs of all functions, as we do in de
Bruijn style, but it is much easier to get confused that way.

Before proving the initiality theorem, let us first observe that substitution
does, in fact, define a category:

Lemma 1.2.12. Substitution is associative: given x : A ` M : B and y : B `
N : C and z : C ` P : D, we have P [N/z][M/y] = P [N [M/y]/z]. (This is a
literal equality of derivations, or equivalently of terms modulo α-equivalence.)

Proof. By induction on the derivation of P . If it ends with the identity, so that
P = z, then

P [N/z][M/y] = z[N/z][M/y] = N [M/y] = z[N [M/y]/z] = P [N [M/y]/z]

If it ends with an application of a morphism f , so that P = f(Q), then

f(Q)[N/z][M/y] = f(Q[N/z])[M/y] = f(Q[N/z][M/y])

= f(Q[N [M/y]/z]) = f(Q)[N [M/y]/z]

using the inductive hypothesis for Q in the third step.

Theorem 1.2.13. The free category on a directed graph G has the same objects
as G, and its morphisms are the derivations A ` B in the cut-free type theory for
categories under G (or, equivalently, the derivable term judgments x : A `M : B,
modulo α-equivalence).

Proof. Let FCatG be defined as in the statement, with composition given by
substitution constructed as in Theorem 1.2.5. By Lemma 1.2.12, composition is
associative. For unitality, we have y[M/y] = y by definition, while N [x/x] = N
is another easy induction on the structure of N . Thus, FCatG is a category.

Now suppose A is any category and ω : G → A is a map of directed graphs.
We define ω : FCatG → A by recursion on the rules of the type theory: the
identity x : A ` x : A goes to idP (A), while x : A ` f(M) : B goes to ω(f)◦ω(M),
with ω(M) defined recursively. Since x : A ` f(M) : B is the composite of
x : A ` M : C and y : C ` f(y) : B in FCatG, this is the only possible
definition that could make ω a functor. It remains to check that it actually
is a functor, i.e. that it preserves all composites; that is, we must show that
ω(N [M/y]) = ω(N) ◦ ω(M). This follows by yet another induction on the
derivation of N .

Note that we did not have to impose any equivalence relation on the deriva-
tions in this theory. This suggests a second, more interesting, general statement
about categorical logic: it is a syntax for generating free categorical structures
using derivations from rules that yield elements in canonical form, eliminating
the need for quotients. This statement is actually too narrow; as we will see later

1.2. CATEGORIES 37

on, type theory is not just about canonical forms. However, canonical forms do
play a very important role.

From the perspective of category theory, the reason for the importance
of canonical forms is that we can easily decide whether two canonical forms
are equal. In the cut-free type theory for categories, two terms present the
same morphism in a free category just when they are literally equal (modulo
α-equivalence); whereas to check whether two terms are equal in the cut-ful
theory we have to remove the identities and reassociate them all to the left or
the right.

In fact, a good algorithm for checking equality of terms in the cut-ful theory
is to interpret them into the cut-free theory ! That is, we note that every rule of
the cut-ful theory is admissible in the cut-free theory, and hence eliminable; so
any term (i.e. derivation) in the cut-ful theory yields a derivation in the cut-free
theory. For instance, to translate the cut-ful term h ◦C ((idC ◦C g) ◦B f) into
the cut-free theory, we first write it as a derivation

h : (C ` D)

idC : (C ` C) g : (B ` C)

(idC ◦C g) : (B ` C)
◦

f : (A ` B)

((idC ◦C g) ◦B f) : (A ` C)
◦

(h ◦C ((idC ◦C g) ◦B f)) : (A ` D)
◦

and then annotate the same derivation by cut-free terms, using substitution for
composition:

z : C ` h(z) : D

z : C ` z : C y : B ` g(y) : C

y : B ` g(y) : C
◦

x : A ` f(x) : B

x : A ` g(f(x)) : C
◦

x : A ` h(g(f(x))) : D
◦

Since, as we have proven, both the cut-ful and the cut-free theory present
the same free structure, it follows that two terms in the cut-ful theory are
equal modulo ≡ exactly when their images in the cut-free theory are identical.
Informally, we are just comparing two terms by “removing all the identities and
the parentheses”; but in a more complicated theory much more can be going on.

In this sense, type theory can be considered to be about solving coherence
problems in category theory. In general, the coherence problem for a categorical
structure is to decide when two morphisms “constructed from its basic data”
are equal (or isomorphic, etc.) For instance, the classical coherence theorem of
MacLane for monoidal categories says, informally, that two parallel morphisms
constructed from the basic constraint isomorphisms of a monoidal category are
always equal; whereas the analogous theorem for braided monoidal categories
says that they are equal if and only if they have the same underlying braid. A
type-theoretic calculus of canonical forms gives a way to answer this question, by
translating a cut-ful theory into a cut-free one, and cut-elimination methods have
frequently been used in the proof of coherence theorems. We will not explore
this aspect here, however.

38 CHAPTER 1. UNARY TYPE THEORIES

A related remark is that categorical logic is about showing that two different
categories have the same4 initial object. The primitive rules of a type theory can
be regarded as the “operations” of a certain algebraic theory, and the judgments
that can be derived from these rules form the initial algebra for this theory, i.e.
the initial object in a certain category. (See Appendix A for a precise statement
along these lines.) The initiality theorems we care about, however, show that
these initial objects are also initial in some other, quite different, category that
is of more intrinsic categorical interest.

Remark 1.2.14. This point of view sheds further light on the distinction between
derivable and admissible rules mentioned in Remark 1.2.6. A derivable rule
automatically holds in any model of the “algebraic theory” version of a type
theory, whereas an admissible rules holds only in the initial algebra (or, more
generally, free algebras) for this algebraic theory. In particular, an arbitrary
model of the algebraic rules of the cut-free type theory for categories is not even
a category, e.g. it may not satisfy the cut rule.

It can be tempting for a category theorist, upon learning that type theory
is a presentation of a certain free structure, to conclude that the emphasis on
free structures is myopic or of only historical interest, and attempt to generalize
to not-necessarily-free algebras over the same theory. This temptation should
be resisted. At best, it leads to neglect of some of the most important and
interesting features of type theory, such as cut-elimination, which holds only in
free structures. At worst, it leads to nonsense, for central type-theoretic notions
such as “bound variable” (see §1.5) only make sense in free structures. We will
see in §1.7 that we can still use type theory to “present” categorical objects that
are not themselves free (at least, not in the usual sense); but the syntax of types
and terms/derivations must still itself be freely generated.

Exercises

Exercise 1.2.1. Let M be a fixed category; then we have an induced adjunction
between Cat/M and Gr/M . Describe a cut-free type theory for presenting
the free category-over-M on a directed-graph-over-M , and prove the initiality
theorem (the analogue of Theorem 1.2.13). Note that you will have to prove
that cut is admissible first. (Hint: index the judgments by arrows in M , so that
for instance A `α B represents an arrow lying over a given arrow α in M .)

Exercise 1.2.2. Category theorists are accustomed to consider Cat as a 2-category,
but our free category FCatG only has a 1-categorical universal property, expressed
by the 1-categorical adjunction between Cat and Gr. It is not immediately
obvious how it could be otherwise, since unlike Cat, Gr is only a 1-category;
but there is something along these lines that we can say.

(a) Suppose G is a directed graph and C a category; define a category Gr(G, C)
whose objects are graph morphisms G → C and whose morphisms are an

4Of course, technically, an object of one category is not generally also an object of another
one. So what we mean is that there is an easy way to transform the initial object of one
category into the initial object of another.

1.3. MEET-SEMILATTICES 39

appropriate kind of “natural transformation”.

(b) Prove that Gr(G,−) is a 2-functor Cat→ Cat.

(c) Using the cut-free presentation of FCatG, prove that it is a representing
object for this 2-functor.

Exercise 1.2.3. Regarding the cut-free type theory for categories as describing
a multi-sorted algebraic theory, define a particular algebra for this theory that
does not satisfy the cut rule. Then define another algebra that does admit a
“cut rule”, but in which the resulting “composition” is not associative.

1.3 Meet-semilattices

Moving gradually up the ladder of nontriviality, we now consider categories
with finite products, or more precisely binary products and a terminal object.
In fact, let us revert back to the posetal world first and consider posets with
binary meets and a top element, i.e. meet-semilattices. We will make all this
structure algebraic, so that our meet-semilattices are posets (which, recall, is
not necessarily skeletal) equipped with a chosen top element and an operation
assigning to each pair of objects a meet. We then have an adjunction relating
the category mSLat of such meet-semilattices (and morphisms preserving all
the structure strictly) with the category RelGr of relational graphs, and we
want to describe the free meet-semilattice on a relational graph G.

One new feature this introduces is that the objects of FmSLatG will no longer
be the same as those of G: we need to add a top element and freely apply the
meet operation. In order to describe this type-theoretically, we introduce a new
judgment “` A type”, meaning that A will be one of the objects of the poset we
are generating. The rules for this judgment are

` > type

` A type ` B type

` A ∧B type

When talking about type theory under G, we additionally include “axiom” rules
saying that each object of G is a type:

A ∈ G
` A type

Note that the premise A ∈ G here is not a judgment; rather it is an “external”
fact that serves as a precondition for application of thish rule. Thus it would be
more correct to write this rule as

` A type
(if A ∈ G)

but we will generally write such conditions as premises, since otherwise the
notation can get rather unwieldy.

40 CHAPTER 1. UNARY TYPE THEORIES

As an example of the application of these rules, if A,B ∈ G we have a
derivation

A ∈ G
` A type

` > type

B ∈ G
` B type

` > ∧B type

` (A ∧ (> ∧B)) type

so that A ∧ (> ∧B) will be one of the objects of FmSLatG.
Now we need to describe the morphisms, i.e. the relation ≤ in FmSLatG. The

obvious thing to do is to assert the universal property of the meet and the top
element:

A ` > A ∧B ` A A ∧B ` B
A ` B A ` C

A ` B ∧ C

This works, but it forces us to go back to asserting transitivity/cut. For instance,
if A,B,C ∈ G we have the following derivation:

(A ∧B) ∧ C ` A ∧B A ∧B ` A
(A ∧B) ∧ C ` A

but there is no way to deduce this without using the cut rule. Thus, this “cut-ful
type theory for meet-semilattices under G” works, but to have a better class of
“canonical forms” for its relations we would also like a cut-free version.

What we need to do is to treat the “projections” A∧B → A and A∧B → B
similarly to how we treated the edges of G in §1.2. However, at this point we
have to make a choice of whether to build in postcomposition or precomposition:

A ` C
A ∧B ` C

or
C ` A ∧B
C ` A

?

Both choices work (that is, they make cut admissible), and lead to different
kinds of type theories with different properties. The first leads to a kind of type
theory called sequent calculus, and the second to a kind of type theory called
natural deduction. We consider each in turn.

1.3.1 Sequent calculus for meet-semilattices

To be precise, for a relational graph G, the unary sequent calculus for meet-
semilattices under G has the following rules (in addition to the rules for the
judgment ` A type mentioned above). We label each rule on the right to make
them easier to refer to later on.

A ∈ G
A ` A

id
f ∈ G(A,B) X ` A

X ` B
fR

` A type

A ` >
>R

A ` C ` B type

A ∧B ` C
∧L1

B ` C ` A type

A ∧B ` C
∧L2

A ` B A ` C
A ` B ∧ C

∧R

1.3. MEET-SEMILATTICES 41

There are several things to note about this. The first is that we have included
in the premises some judgments of the form ` A type. This ensures that whenever
we can derive a sequent A ` B, that A and B are well-formed as types. However,
we don’t need to assume explicitly as premises that all types appearing in any
sequent are well-formed, only those that are introduced without belonging to
any previous sequents; this is sufficient for the following inductive proof.

Theorem 1.3.1. In the unary sequent calculus for meet-semilattices under G,
if A ` B is derivable, then so are ` A type and ` B type.

Proof. By induction on the derivation of A ` B.

� If it is the id rule, then A ∈ G and so ` A type.

� If it ends with the rule f for some f ∈ G(A,B), then B ∈ G and so ` A type,
while X ` A and so ` X type by the inductive hypothesis.

� If it ends with the rule >R, then ` A type by assumption.

� If it ends with the rule ∧L1, then ` B type by assumption, while ` A type
and ` C type by the inductive hypothesis; thus also ` A ∧B type.

� The cases for ∧L2 and ∧R are similar.

We will generally formulate our type theories with just enough premises to
make theorems such as Theorem 1.3.1 true. Essentially this means that if some
type appears in the conclusion but not in any of the premises, we have to add
its “type-ness” judgment as an additional premise. We will not usually state
and prove theorems analogous to Theorem 1.3.1 explicitly, but the reader can
verify that they will always be true.

The second thing to note about our current type theory is that we only assert
the identity rule A ` A when A is a generating object (also called a base type),
i.e. an object of G. This is sufficient because in the sequent calculus, we can
derive the identity rule for any type:

Theorem 1.3.2. In the unary sequent calculus for meet-semilattices under G,
if A is a type (that is, if ` A type is derivable), then A ` A is derivable.

Proof. We induct on the derivation of ` A type. There are three cases:

(a) A is in G. In this case A ` A is an axiom.

(b) A = >. In this case > ` > is a special case of the rule that anything ` >.

(c) A = B ∧ C and we have derivations DB and DC of ` B type and ` C type
respectively. Therefore we have, inductively, derivations D1 and D2 of
B ` B and C ` C, and we can put them together like this:

D1

...

B ` B

DC

...

` C type

B ∧ C ` B

D2

...

C ` C

DB

...

` B type

B ∧ C ` C
B ∧ C ` B ∧ C

42 CHAPTER 1. UNARY TYPE THEORIES

In other words, the general identity rule

` A type

A ` A

is also admissible. This is a general characteristic of sequent calculi.

Next we prove that the cut rule is admissible for this sequent calculus too.

Theorem 1.3.3. In the unary sequent calculus for meet-semilattices under G,
if A ` B and B ` C are derivable, then so is A ` C.

Proof. By induction on the derivation of B ` C.

(a) If it is id, then B = C. Now A ` C is just A ` B and we are done.

(b) If it is f ∈ G(C ′, C), then we have a derivation of B ` C ′. So by the
inductive hypothesis we can derive A ` C ′, whence also A ` C by the rule
for f .

(c) If it ends with >R, then C = >. Since A ` B is derivable, by Theorem 1.3.1
` A type is also derivable; thus by >R we have A ` >.

(d) If it ends with ∧R, then C = C1 ∧ C2 and we have derivations of B ` C1

and B ` C2. By the inductive hypothesis we can derive both A ` C1 and
A ` C2, to which we can apply ∧R to get A ` C1 ∧ C2.

(e) If it ends with ∧L1, then B = B1 ∧B2 and we can derive B1 ` C. We now
do a secondary induction on the derivation of A ` B.

(i) It cannot end with id or f or >R, since B = B1 ∧B2 is not in G and
not equal to >.

(ii) If it ends with ∧L1, then A = A1 ∧A2 and we can derive A1 ` B. By
the inductive hypothesis, we can derive A1 ` C, and hence by ∧L1
also A ` C. The case of ∧L2 is similar.

(iii) If it ends with ∧R, then we can derive A ` B1 and A ` B2. Recall that
we are also assuming a derivation of B1 ` C. Thus, by the inductive
hypothesis on A ` B1 and B1 ` C, we can derive A ` C.

(f) The case when it ends with ∧L2 is similar.

This simple proof already displays many of the characteristic features of a
cut-admissibility argument. The final case (e)(iii) is called the principal case
for the operation ∧, when the type B we are composing over (also called the
cut formula) is obtained from ∧ and both sequents are also obtained from the
∧ rules. In a direct argument for cut-elimination such as that sketched after

1.3. MEET-SEMILATTICES 43

Theorem 1.2.7, this case becomes the following transformation on derivations:

D1

...

A ` B1

D2

...

A ` B2

A ` B1∧B2

∧R

D3

...

B1 ` C
B1∧B2 ` C

∧L1

A ` C
cut

D1

...

A ` B1

D3

...

B1 ` C
A ` C

cut

Remark 1.3.4. It may seem somewhat odd that we can prove the admissibility
of all cuts (compositions), but we have to assert identities as a primitive rule
for base/generating types. This is essentially because we chose to “build a cut”
into the rule fR that represents the generating arrows. If we had not, then we
would have to assert “cuts over base types” (that is, where the cut formula is an
object of G) as primitive rules, the way we did in the cut-ful theory of §1.2.1.
Put differently, building a cut into fR is essentially the “morphism version” of
asserting identities primitively for base types.

Finally, we have the initiality theorem:

Theorem 1.3.5. For any relational graph G, the free meet-semilattice FmSLatG
it generates is described by the unary sequent calculus for meet-semilattices under
G: its objects are the A such that ` A type is derivable, with A ≤ B just when
A ` B is derivable.

Proof. Theorems 1.3.2 and 1.3.3 show that this defines a poset FmSLatG. The
rule >R implies that > is a top element, while the rules ∧L1, ∧L2, and ∧R imply
that A ∧B is a binary meet. Therefore, we have a meet-semilattice. Moreover,
the rules id and f yield a map of posets G → FmSLatG.

Now suppose M is any other meet-semilattice with a map ω : G → M.
Recall that a meet-semilattices is equipped with a chosen top element and meet
function. We extend ω to a map from the objects of FmSLatG by recursion on
the construction of the latter, sending > to the chosen top element of M, and
A ∧ B to the chosen meet in M of the (recursively defined) images of A and
B. This is clearly the only possible meet-semilattice map extending ω, and it
clearly preserves the chosen meets and top element, so it suffices to check that it
is a poset map. This follows by a straightforward induction over the rules for
deriving the judgment A ` B.

To finish, we observe that this sequent calculus has another important
property. Inspecting the rules, we see that the operations ∧ and > only ever
appear in the conclusions of rules. Each operation ∧ and > has zero or more
rules allowing us to introduce it on the right of the conclusion, and likewise zero
or more rules allowing us to introduce it on the left. (Specifically, ∧ has two left
rules and one right rule, while > has zero left rules and one right rule.) This is
convenient if we are given a sequent A ` B and want to figure out whether it is
derivable: we can choose rules to apply “in reverse” by breaking down A and B
according to their construction out of ∧ and >.

44 CHAPTER 1. UNARY TYPE THEORIES

It also tells us nontrivial things about derivations. For instance, all the
primitive rules have the property that every type appearing in their premises
also appears as a sub-expression of some type in their conclusion. Thus, any
(cut-free) derivation of a sequent A ` B must involves only types appearing as
sub-expressions of A and B. This is called the subformula property.

The phrase sequent calculus, like type theory, is difficult to define precisely,
but sequent calculi generally exhibit the properties we have observed in this
subsection: admissibility of the identity rule (based on an axiom applying only
to base types), admissibility of cut, type operations appearing only in the
conclusions of rules, and the subformula property.

1.3.2 Natural deduction for meet-semilattices

Now suppose we make the other choice about how to treat projections. We
call this the unary natural deduction for meet-semilattices under G; its
rules (in addition to those for ` A type) are

` X type

X ` X
id

f ∈ G(A,B) X ` A
X ` B

fI
` X type

X ` >
>I

X ` B ∧ C
X ` B

∧E1
X ` B ∧ C
X ` C

∧E2
X ` B X ` C

X ` B ∧ C
∧I

We observe first that this theory has the same well-formedness property as
the sequent calculus:

Theorem 1.3.6. In the unary natural deduction for meet-semilattices under G,
if A ` B is derivable, then so are ` A type and ` B type.

Unlike the sequent calculus, however, the general identity rule is not admissi-
ble: there is no way to derive A ∧B ` A ∧B from A ` A and B ` B without it.
Thus, we assert the id for all types, not just those coming from G.

Cut, however, is still admissible:

Theorem 1.3.7. In the unary natural deduction for meet-semilattices under G,
if A ` B and B ` C are derivable, then so is A ` C.

Proof. We induct on the derivation of B ` C.

(a) The cases when it ends with id, f , >I, and ∧I are just like those in
Theorem 1.3.3 for id, f , >R, and ∧R.

(b) If it ends with ∧E1, then we have B ` C∧D for some D. Thus, A ` C∧D by
the inductive hypothesis, so A ` C by ∧E1. The case of ∧E2 is similar.

The proof is noticeably simpler than that of Theorem 1.3.3; we don’t need
the secondary inner induction. This is essentially due to the fact that all the
rules of this theory involve an arbitrary type X on the left (rather than one built

1.3. MEET-SEMILATTICES 45

using operations such as ∧). Thus, instead of the rules of sequent calculus that
introduce operations like ∧ and > on the left and right, we have rules like >I
and ∧I that introduce them on the right, and also rules that eliminate them
on the right like ∧E1 and ∧E2. These properties are characteristic of natural
deduction theories. (Later on, in §2.7.3, we will be able to give a more convincing
explanation of the origin of the phrase “natural deduction”.)

Remark 1.3.8. Because the proof of cut admissibility for natural deduction
theories is so much simpler than that for sequent calculus, some people say
that the former is “trivial”. Triviality is subjective; but what seems inarguable
is that cut-admissibility for natural deduction is saying something different
than cut-admissibility for sequent calculus. The content of cut-admissibility for
sequent calculus corresponds more closely to β-conversion in natural deduction
(see §1.4). Similarly, the admissibility of the identity rule for sequent calculus
corresponds to the η-conversion rule in natural deduction (see §1.4 for that too).

Of course, we should also prove the initiality theorem:

Theorem 1.3.9. For any relational graph G, the free meet-semilattice FmSLatG
it generates is described by the unary natural deduction for meet-semilattices
under G: its objects are the A such that ` A type is derivable, with A ≤ B just
when A ` B is derivable.

Proof. Almost exactly like Theorem 1.3.5.

Exercises

Exercise 1.3.1. Using the unary sequent calculus for meet-semilattices, prove
that A ∧ A ∼= A for any object A of any meet-semilattice. (Recall that meet-
semilattices are categories with at most one morphism in each hom-set, so for
two objects to be isomorphic it suffices to have a morphism in each direction.)
Then prove the same thing using the natural deduction.

Exercise 1.3.2. Using either the sequent calculus or the natural deduction for
meet-semilattices (your choice), prove that in any meet-semilattice we have

A ∧ > ∼= A > ∧A ∼= A A ∧B ∼= B ∧A A ∧ (B ∧ C) ∼= (A ∧B) ∧ C

Exercise 1.3.3. Prove that the rules >R and ∧R in the unary sequent calculus for
meet-semilattices are invertible, in the sense that whenever we have a derivation
of their conclusions, we also have a derivation of all their premises.

Exercise 1.3.4. Describe a sequent calculus for join-semilattices (posets with
a bottom element and binary joins), and prove the admissibility and initiality
theorems for it. The rules for ⊥ and ∨ should be exactly dual to the rules for >
and ∧.

Exercise 1.3.5. By putting together the rules for meet- and join-semilattices,
describe a sequent calculus for lattices (posets with a top and bottom element
and binary meets and joins), and prove the admissibility and initiality theorems
for it.

46 CHAPTER 1. UNARY TYPE THEORIES

Exercise 1.3.6. Prove that in your sequent calculus for lattices from Exercise 1.3.5,
the rules >R, ∧R, ⊥L, and ∨L are all invertible in the sense of Exercise 1.3.3.

Exercise 1.3.7. A map of posets P : A → M is called a (cloven) fibration if
whenever b ∈ A and x ≤ P (b), there is a chosen a ∈ A such that P (a) = x and
a ≤ b and moreover for any c ∈ A , c ≤ b and P (c) ≤ x together imply c ≤ a.
The object a can be written as x∗(b).

(a) Given a fixed poset M , describe a sequent calculus for fibrations over
M by adding rules governing the operations x∗ to the cut-free theory of
Exercise 1.2.1.

(b) Prove the initiality theorem for this sequent calculus.

(c) Use this sequent calculus to prove that in any fibration P : A →M , if we
have b ∈ A and x ≤ y ≤ P (b), then x∗(y∗(b)) ∼= x∗(b).

Exercise 1.3.8. Now describe instead a natural deduction for fibrations over
M , prove the initiality theorem, and re-prove that x∗(y∗(b)) ∼= x∗(b) using this
theory.

Exercise 1.3.9. Suppose we augment your sequent calculus for fibrations over
M from Exercise 1.3.7 with the following additional rules for “fiberwise meets”.
Here ` A typex is a judgment indicating that A will be an object of our fibration
in the fiber over x ∈M .

` >x typex

` A typex ` B typex
` A ∧x B typex

` A typex
A `x≤y >y

A `x≤y C ` B typex
A ∧x B `x≤y C

B `x≤y C ` A typex
A ∧x B `x≤y C

A `x≤y B A `x≤y C
A `x≤y B ∧y C

Consider the sequents

x∗(A ∧y B) `x≤x x∗A ∧x x∗B
x∗A ∧x x∗B `x≤x x∗(A ∧y B)

for x ≤ y, ` A typey, and ` B typey.

(a) Construct derivations of these sequents in the above sequent calculus.

(b) Write down an analoguous natural deduction and derive the above sequents
therein.

(c) What categorical structure do you think these type theories construct the
initial one of? If you feel energetic, prove the initiality theorem.

1.4. CATEGORIES WITH PRODUCTS 47

Exercise 1.3.10. A map of posets P : A → M is called an opfibration if
P op : A op → M op is a fibration. The analogous operation takes a ∈ A and
P (a) ≤ y to a b ∈ A with P (b) = y and a ≤ b and a universal property; we
write this b as y!(a). We say P is a bifibration if it is both a fibration and an
opfibration. Describe a sequent calculus for bifibrations over a fixed M , and
prove the initiality theorem.

Exercise 1.3.11. Use your sequent calculus from Exercise 1.3.10 to prove that in
a bifibration of posets, if x ≤ y in M , we have an adjunction y! a x∗.
Exercise 1.3.12. Use your sequent calculus from Exercise 1.3.10 to prove that in
a bifibration of posets, if x ∼= y in M , we have an isomorphism x!

∼= x∗ (that is,
for any a in the fiber over y, we have x!(a) ∼= x∗(a)).

1.4 Categories with products

Now we move back from posets to categories. For brevity, by a category with
products we will mean a category with specified binary products and a specified
terminal object. Let PrCat be the category of such categories with products,
and functors preserving them strictly. Then we have an adjunction relating
PrCat to Gr, and we want to describe the left adjoint with a type theory.

As in §1.3.2, we could take either the sequent calculus route or the natural
deduction route. Unfortunately, even if we build in enough composition to make
cut admissible, in both cases we need to impose a further equivalence relation on
the derivations, as there are single morphisms that can be derived in multiple
ways. However, the ways in which this happens in the two cases are different.

On one hand, if we have an arrow f : A → C in a directed graph G, then
there is a morphism A×B → A→ A×C in the free category-with-products on
G. In a sequent calculus, there are two distinct derivations of this morphism:

A ` A
A×B ` A

A ` A
A ` C

f

A×B ` C
A×B ` A× C

A ` A
A ` A
A ` C

f

A ` A× C
A×B ` A× C

whereas in a natural deduction there will be only one:

A×B ` A×B
A×B ` A

A×B ` A×B
A×B ` A
A×B ` C

f

A×B ` A× C

This sort of thing is true quite generally. A sequent calculus includes both left
and right rules, so to derive a given sequent we must choose whether a left or
a right rule is to be applied last. By contrast, both kinds of rules in a natural
deduction (introduction and elimination) act on the right, so there is less choice
about what rule to apply last.

48 CHAPTER 1. UNARY TYPE THEORIES

On the other hand, if we have an arrow A → B in G, then in a natural
deduction there are (at least) two derivations of the identity A→ A:

A ` A
A ` A
A ` B

A ` A×B
A ` A and A ` A (1.4.1)

while in a sequent calculus there is only one:

A ` A

This is also true quite generally. A natural deduction includes both introduction
and elimination rules, so we will always be able to introduce a type and then
eliminate it, essentially “doing nothing”. By contrast, in a sequent calculus
we have “only introduction rules” (of both left and right sorts), so this cannot
happen.

Remark 1.4.2. In §0.1 we mentioned that by presenting free categorical structures
without explicit reference to composition, type theory enables us to define
composition in such a way as to ensure that various desirable properties hold
as exact equalities. The point here is just that sequent calculus and natural
deduction make different choices of which properties to ensure by their definitions
of composition. Roughly speaking, sequent calculus chooses to make the defining
equations of universal properties hold exactly (e.g. the composites of a paired
morphism 〈f, g〉 : X → A×B with π1 and π2 are exactly f and g respectively);
this is what the “principal case” of its cut-admissibility proof does. On the other
hand, natural deduction chooses to make the naturality5 of universal properties
hold exactly; the equality between the two distinct sequent calculus derivations
above expresses the naturality of pairing 〈f, g〉 : X → A × B with respect to
precomposition by π1.

In fact, in the simple case of a unary type theory for categories with products,
there are tricks enabling us to eliminate both kinds of redundancy, and thereby
do without any “≡” for both the sequent calculus and the natural deduction.
(For sequent calculus the trick is called “focusing”, and for natural deduction
the trick is called “canonical/atomic terms”.) However, in even slightly more
complicated theories the analogous tricks do not eliminate ≡ completely (though
they do reduce its complexity). Moreover, our focus here is on type theory as a
notation for category-theoretic arguments, not as a tool for isolating canonical
forms and proving coherence theorems. Thus, we will not spend any time on
these tricks, but instead bite the bullet and deal with ≡.

As was the case in §1.2.1, it is easier to describe the rules for ≡ if we first
introduce terms for derivations. Thus, we generalize the abstract-variable term
syntax of §1.2.2 with terms for the × and 1 rules, as shown in Figure 1.1.

5This is not actually the origin of the term “natural deduction” — see §2.7.3 for that —
but it serves as a useful mnemonic.

1.4. CATEGORIES WITH PRODUCTS 49

` X type

x : X ` x : X
id

f ∈ G(A,B) x : X `M : A

x : X ` f(M) : B
fI

` X type

x : X ` ∗ : 1
1I

x : X `M : B × C
x : X ` πB,C1 (M) : B

×E1
x : X `M : B × C
x : X ` πB,C2 (M) : C

×E2

x : X `M : B x : X ` N : C

x : X ` 〈M,N〉 : B × C
×I

Figure 1.1: Terms for categories with products

Since terms are just a notation for derivations, the general principle for
naming derivations by terms is that each rule (being an operation on derivations)
should correspond to a “term operation” that indicates unambiguously what
rule is being applied, what the premises are (by including terms for them),
and how they are combined. This is no different from any other mathematical
notation for any other operation. For instance, in §1.2.1 the composition rule
was represented by a (subscripted) binary operation ◦B combining a pair of
terms for the premises.

However, the use of abstract variables complicates matters a bit, because we
are only free to describe a notation for the term part (attached to the consequent),
whereas the term part only describes a derivation when combined with a variable
(attached to the antecedent). For instance, the two premises x : X `M : A and
x : X ` N : B of the rule ×I are really x.M : (X ` A) and x.N ` (X ` B),
and so the term for the induced derivation X ` A×B ought to “pair up” x.M
and x.N somehow; but how would it then be associated to a variable in its own
antecedent?

In our present case, we can solve this by using the fact that both premises
have the same antecedent and the same variable, so we can “pull that variable
out” of the pair and write x.〈M,N〉 : (X ` A×B), or x : X ` 〈M,N〉 : A×B.
(In other cases, such as §1.5, a more complicated solution is needed.) But why
do they have the same variable? Of course, if we use the de Bruijn method,
then they must always have the same variable because all judgments have the
same variable. But otherwise, they might in principle have different variables,
and so we might have to rename the variable in one of them (that is, apply an
α-equivalence) before we can use this notation for ×I. This is an important
general principle.

Principle 1.4.3. A rule applies equally to any derivations of its premises, but the
abstract-variable term notation for that rule may require certain compatibilities
between the variables occurring in the premises, which can always be ensured by
α-equivalence.

The terms for the other rules ×E1,×E2,1I are relatively straightforward.

50 CHAPTER 1. UNARY TYPE THEORIES

The superscript type annotations on the projections πB,C1 and πB,C2 are necessary
to make type-checking possible, since otherwise it would not be clear from a
term such as x : A ` π1(M) : B what the type of M should be in the premise.
However, in practice we often omit them. It is then straightforward to prove the
analogue of Lemma 1.2.2.

Note how well the natural-deduction choice of “all rules acting on the right”
matches the use of abstract variables: in all cases we can think of “applying
functions to arguments” in a familiar way. It is possible to describe sequent
calculus derivations using terms as well, but they are less pretty. For this reason,
we will henceforth use sequent calculus only for posetal theories. (I emphasize
that this is a choice of focus and exposition for the present notes only; sequent
calculus has successfully been used to answer many coherence questions about
non-posetal categorical structures.) The need to impose the identity rule for all
types (not just those coming from G) also makes perfect sense from the abstract
variable standpoint: a variable in any type is also a term of that type.

Now that we have our terms, the desired equivalence between the two
derivations (1.4.1) of the identity A→ A can be written as

πA,B1 (〈M,N〉) ≡M (1.4.4)

and of course we should also have

πA,B2 (〈M,N〉) ≡ N (1.4.5)

Note that in these equalities we allow M and N to be arbitrary terms. Categori-
cally speaking, therefore, we are asserting that the maps X → A×B induced by
the universal property of the product (the ×I rule) do in fact have the desired
composites with the projections.

The other half of the universal property is the uniqueness of maps into a
product. This corresponds to a dual family of simplifications: we want to identify
the following derivations of A×B → A×B.

A×B ` A×B
A×B ` A

A×B ` A×B
A×B ` B

A×B ` A×B A×B ` A×B

In term syntax, this means that

〈πA,B1 (M), πA,B2 (M)〉 ≡M (1.4.6)

In type-theoretic lingo, the equalities (1.4.4) and (1.4.5) are called β-conversion6

while the equality (1.4.6) is called an η-conversion.

6Presumably β-conversion is so named because it is the “second most basic” equivalence
relation on terms, with α-equivalence (renaming of variables) being the first. However, there is
a significant difference between the two: α-equivalent terms represent the same derivation,
while β-conversion relates distinct derivations (though we generally notate them with terms).

1.4. CATEGORIES WITH PRODUCTS 51

x : X `M : A x : X ` N : B

x : X ` πA,B1 (〈M,N〉) ≡M : A

x : X `M : A x : X ` N : B

x : X ` πA,B2 (〈M,N〉) ≡ N : B

x : X `M : A×B
x : X ` 〈πA,B1 (M), πA,B2 (M)〉 ≡M : A×B

x : X `M : 1

x : X ` ∗ ≡M : 1

x : X `M : A

x : X `M ≡M : A

x : X `M ≡ N : A

x : X ` N ≡M : A

x : X `M ≡ N : A x : X ` N ≡ P : A

x : X `M ≡ P : A

f ∈ G(A,B) x : X `M ≡ N : A

x : X ` f(M) ≡ f(N) : B

x : X `M ≡ N : B × C
x : X ` πB,C1 (M) ≡ πB,C1 (N) : B

x : X `M ≡ N : B × C
x : X ` πB,C2 (M) ≡ πB,C2 (N) : B

x : X `M ≡M ′ : B x : X ` N ≡ N ′ : C

x : X ` 〈M,N〉 ≡ 〈M ′, N ′〉 : B × C

Figure 1.2: Equality rules for categories with products

For 1 there is no β-conversion rule, while the η-conversion rule is

∗ ≡M (1.4.7)

for any term M : 1. These conversions generate an equivalence relation on terms,
which we also require to be a congruence for everything else.

We can describe this more formally with an additional judgment “x : X `
M ≡ N : A”, with rules shown in Figure 1.2. Note that in addition to the β-
and η-conversions, we assert reflexivity, symmetry, and transitivity, and also that
all the previous rules preserve equality. As remarked in §1.2.1, all our equality
judgments ≡ will be equivalence relations with such a congruence property for
all the primitive rules. In general we will not bother to state these “standard”
rules for ≡, but since this is our first encounter with such a relation involving
“abstract variable” term syntax we have included them explicitly.

This completes the definition of the unary type theory for categories
with products under G.

Remark 1.4.8. Note that unlike the equalities h ◦ (g ◦ f) ≡ (h ◦ g) ◦ f from §1.2.1,
the β- and η-conversions are intutively “directional”, with one side being “simpler”
than the other. This suggests that we should be able to “reduce” an arbitrary

52 CHAPTER 1. UNARY TYPE THEORIES

term to a “simplest possible form” by successively applying β- and η-conversions.
Such is indeed the case (although for technical reasons the η-conversion is usually
applied in the less intuitive right-to-left direction and called an “expansion”
rather than a “reduction”). This process of reduction (and expansion) belongs
to the “computational” side of type theory, which (though of course important
in its own right) is somewhat tangential to our category-theoretic emphasis, so
we will not discuss it in detail.

Remark 1.4.9. Note that this type theory has three kinds of judgments (or
“judgment forms”):

` A type x : A `M : B x : A `M ≡ N : B.

Categorically, these will represent the objects of a category, the morphisms of a
category, and the equalities between those morphisms. We have discussed how
in the morphism judgment x : A `M : B, the term x.M is an annotation that
isomorphically represents a particular derivation of the un-annotated judgment
A ` B. In the object judgment ` A type, we can similarly regard A as a
term annotation isomorphically representing a particular derivation of an un-
annotatated judgment “` type”. (We could thus write it as ` A : type or
A : (` type), but we generally don’t, to avoid confusion with elements of the
“universe types” that will be introduced much later.)

By contrast, the equality judgment x : A `M ≡ N : B is the un-annotated
version; we have not introduced any terms representing its derivations. This is
because two morphisms in a category can’t be “equal in more than one way”,
so there is never any reason to care which derivation of an equality judgment
we used. (Of course, this perspective has to be modified when one moves on
to higher category theory.) Note that the terms x.M and x.N annotating
particular derivations of the morphism judgment appear in the un-annotated
equality judgment, just as the terms A and B annotating particular derivations
of the object judgment appear in the un-annotated morphism judgment A ` B.

Theorem 1.4.10. Substitution is admissible in the unary type theory for cate-
gories with products under G. That is, if we have derivations of x : A `M : B
and y : B ` N : C, then we have a derivation of x : A ` N [M/y] : C.

Proof. The proof is essentially the same as that of Theorem 1.3.7, but we write it
out again explicitly with terms present. As always, we induct on the derivation
of y : B ` N : C.

(a) If it ends with id, then we can use the given derivation M .

(b) If it ends swith fI for f ∈ G(C ′, C), then we have y : B ` N ′ : C ′, so by
induction we have x : A ` N ′[M/y] : C ′ and hence x : A ` f(N ′[M/y]) : C ′.

(c) If it ends with 1I, then by 1I we have x : A ` ∗ : 1 as well.

(d) If it ends with ×E1, then we have y : B ` N ′ : C × C ′, so by induction we
have x : A ` N ′[M/y] : C × C ′, hence x : A ` π1(N ′[M/y]) : C by ×E1.
The case for ×E2 is similar.

1.4. CATEGORIES WITH PRODUCTS 53

(e) Finally, if it ends with ×I, we have y : B ` N1 : C1 and y : B ` N2 : C2,
so by induction we have x : A ` N1[M/y] : C1 and x : A ` N2[M/y] : C2,
hence x : A ` 〈N1[M/y], N2[M/y]〉 : C1 × C2.

As with Theorem 1.2.5, this proof can be regarded as defining recursively
what it means to “substitute” M for y in N . The defining clauses are

N [M/y] = M

(f(N))[M/y] = f(N [M/y])

∗[M/y] = ∗
(π1(N))[M/y] = π1(N [M/y])

(π2(N))[M/y] = π2(N [M/y])

〈N1, N2〉[M/y] = 〈N1[M/y], N2[M/y]〉

We leave it to the reader to similarly prove the following (Exercise 1.4.3):

Lemma 1.4.11. The relation ≡ is a congruence for substitution in the unary
type theory for categories with products under G. In other words, if we have
derivations of x : X `M ≡M ′ : B and y : B ` N ≡ N ′ : C, then we can derive
x : A ` N [M/y] ≡ N ′[M ′/y] : C.

Lemma 1.4.12. Substitution is associative in the unary type theory for cate-
gories with products under G: we have P [N/z][M/y] = P [N [M/y]/z].

The proof of the initiality theorem is also similar, but we write out some of
the details for later reference.

Theorem 1.4.13. For any directed graph G, the free category-with-products
FPrCatG it generates is described by the unary type theory for categories with
products under G: its objects are the A such that ` A type is derivable, and
its morphisms A → B are the terms M such that x : A ` M : B is derivable,
modulo the equivalence relation ≡.

Proof. Lemmas 1.4.11 and 1.4.12 and Theorem 1.4.10 show that we obtain a
category with products in this way. Now given any other category with products
M and a map P : G →M, we proceed inductively:

(a) We define a map from types to the objects of M inductively on derivations
of ` A type, starting with P and then using the chosen products in M.

(b) Then we define a map from terms to the morphisms of M inductively
on derivations of x : A ` M : B, composing with the image of P for the
generator rules, and using the universal properties of the finite products in
M for the introduction and elimination rules.

(c) Then we define a map from derivations of x : A `M ≡ N : B to equalities of
morphisms inM by induction on the former, using the laws of the universal
properties of products in M and the fact that equality is an equivalence
relation and a congruence for everything.

54 CHAPTER 1. UNARY TYPE THEORIES

(d) Then we prove that this operation is functorial, i.e. it takes a substitution
N [M/x] to a composite in M, by induction on the derivation of N (which
is also, of course, how substitution is defined).

(e) Then we prove that this functor preserves (the specified) products, essentially
by definition.

(f) Finally, we show that it is the unique such functor, since its definition was
forced at every stage by the fact that it be a functor preserving products.

Exercises

Exercise 1.4.1. Suppose we have

f ∈ G(A,B) g ∈ G(A,C) h ∈ G(B,D) k ∈ G(C,E)

Consider the following two derivations of A ` D × E. Note that both use the
admissible cut/substitution rule.

A ` A
A ` B

f
B ` B
B ` D

h

A ` D
cut

A ` A
A ` C

g
C ` C
C ` E

k

A ` E
cut

A ` D×E
×I

A ` A
A ` B

f
A ` A
A ` C

g

A ` B×C
×I

B×C ` B×C
B×C ` B

×E1

B×C ` D
h

B×C ` B×C
B×C ` C

×E2

B×C ` E
k

B×C ` D×E
×I

A ` D×E
cut

Write down the terms corresponding to these two derivations and show directly
that they are related by ≡.

Exercise 1.4.2. Use the type theory for categories with products to prove that
in any category with products we have

A×B ∼= B ×A A× (B ×C) ∼= (A×B)×C A× 1 ∼= A 1×A ∼= A.

Note that since we are in categories now rather than posets, to show that two
types A and B are isomorphic we must derive x : A `M : B and y : B ` N : A
and also show that their substitutions in both orders are equal (modulo ≡) to
identities.

Exercise 1.4.3. Prove Lemmas 1.4.11 and 1.4.12 (substitution is associative and
respects ≡ in the unary type theory for categories with products).

1.4. CATEGORIES WITH PRODUCTS 55

Exercise 1.4.4. A functor P : A → M is called a fibration if for any b ∈ A
and f : x→ P (b), there exists a morphism φ : a→ b in A such that P (φ) = f
and φ is cartesian, meaning that for any ψ : c→ b and g : P (c)→ x such that
P (ψ) = fg, there exists a unique χ : c → a such that P (χ) = g and φχ = ψ.
The object c is denoted f∗(b).

(a) Generalize your natural deduction for fibrations of posets from Exercise 1.3.8
to a type theory for fibrations of categories over a fixed base category M ,
with β- and η-conversion ≡ rules.

(b) Prove the initiality theorem for this type theory.

(c) Use this type theory to prove that in any fibration P : A →M :

(i) For any f : x→ y in M , f∗ is a functor from the fiber over y to the
fiber over x.

(ii) For any B ∈ A and x
f−→ y

g−→ P (B) in M , we have f∗(g∗(B)) ∼=
(gf)∗(M).

Exercise 1.4.5. Generalize Exercise 1.3.9 from posets to categories, combining
your type theory from Exercise 1.4.4 with the one for categories with products
from §1.4.

Exercise 1.4.6. The category PrCat is a 2-category whose 2-cells are arbi-
trary natural transformations (that is, there is no nonvacuous notion of a
“product-preserving natural transformation”). Let G be a directed graph; as
in Exercise 1.2.2, define a 2-functor Gr(G,−) : PrCat→ Cat, and show that
FPrCatG is a representing object for it. (Use induction over the derivations of
the judgments in its type-theoretic description.)

Exercise 1.4.7. Exercises 1.2.2 and 1.4.6 address one worry that a category
theorist might have about the strictness of our constructions. Another such
worry is that the morphisms in PrCat preserve specified products strictly, while
it is usually more natural in category theory to preserve products only up to
isomorphism. This is not a problem if our main purpose is to have a syntax to
describe objects and morphisms in particular categories with products; indeed,
it is exactly what we would want. However, for abstract reasons it may be nice
to also be able to say something about less strict functors.

With this in mind, prove that for any G, the category with products FPrCatG
is semi-flexible in the sense of [BKP89]: that is, if M has chosen products,
then every functor FPrCatG →M that preserves products in the usual up-to-
isomorphism sense is naturally isomorphic to a functor that preserves the chosen
products strictly. (Again, use induction over derivations in the type-theoretic
description.) Deduce that FPrCatG satisfies a universal property relative to the
2-category of categories with products and functors that preserve them up to
isomorphism.

Exercise 1.4.8. Here is another way to prove the result of Exercise 1.4.7.

56 CHAPTER 1. UNARY TYPE THEORIES

(a) Use the initiality of FPrCatG to show that if M has finite products and
Q : M → FPrCatG preserves finite products strictly, then any map of
directed graphs G →M that lifts the inclusion G → FPrCatG extends to a
section FPrCatG →M of Q in PrCat.

(b) The results of [BKP89] imply that the 2-category of categories with products
and functors that preserve products in the usual up-to-isomorphism sense
has 2-categorical limits called products, inserters, and equifiers, and the
projections of these limits preserve products strictly. Use this, and (a), to
prove that FPrCatG satisfies a universal property relative to this 2-category.

1.5 Categories with coproducts

In Exercise 1.3.4, you obtained a sequent calculus for join-semilattices by dualizing
the sequent calculus for meet-semilattices. However, natural deductions don’t
dualize as straightforwardly, due to the insistence that all rules act only on the
right. (Of course, we could dualize them to “co-natural deductions” in which
all rules act only on the left, but that would destroy the familiar behavior of
terms on variables, as well as make it tricky to combine left and right universal
properties, such as for lattices.) To describe joins in a natural deduction, we
need to “build an extra cut” into their universal property:

X ` A
X ` A ∨B

∨I1
X ` B

X ` A ∨B
∨I2

X ` A ∨B A ` C B ` C
X ` C

∨E

Note that ∨E is precisely the result of cutting ∨L with an arbitrary sequent:

X ` A ∨B
A ` C B ` C

A ∨B ` C
∨L

X ` C
cut

We treat the bottom element similarly:

X ` ⊥ ` C type

X ` C

Rather than take the time to study join-semilattices, we skip directly to a
unary type theory for categories with coproducts in which we care about
distinct derivations. As usual, for this purpose we annotate the judgments with
terms, as shown in Figure 1.3.

Most of the term operations are easy to guess. The two injections A→ A+B
and B → A+B are named inl and inr (“in-left” and “in-right”), while the unique
morphism 0→ C is called match0. However, the term notation for +E merits
some discussion.

Recall from §1.4 that a term notation should indicate derivations of the
premises of the rule by including terms for them, and that in general this can be

1.5. CATEGORIES WITH COPRODUCTS 57

` X type

x : X ` x : X
id

f ∈ G(A,B) x : X `M : A

x : X ` f(M) : B
fI

x : X `M : 0 ` C type

x : X ` match0(M) : C
0E

x : X `M : A

x : X ` inl(M) : A+B
+I1

x : X ` N : B

X ` inr(N) : A+B
+I2

x : X `M : A+B u : A ` P : C v : B ` Q : C

x : X ` matchA+B(M,u.P, v.Q) : C
+E

Figure 1.3: Unary type theory for categories with coproducts

tricky when using abstract variables because a derivation is only determined by a
term together with its variable. The premises of +E are, when paired explicitly
with their variables, x.M : (X ` A+B) and u.P : (A ` C) and v.Q : (B ` C),
so the term notation should operate on all three of these. But unlike the case
of ×I, now all three premises have different antecendents (and to emphasize
this, we have used three different variables as well), so we cannot pull the same
variable out of all of them.

However, since the antecedent of the conclusion is X, which is also the
antecedent of the first premise, we can pull that variable (namely x) out to
be the variable of the conclusion, leaving the other variables u and v paired
with their terms. This leads us to x.matchA+B(M,u.P, v.Q). Note that the
periods in u.P and v.Q bind more tightly than the commas, so this should be
parsed as x.matchA+B(M, (u.P), (v.Q)). The annotation by A+B is to make
type-checking possible (but often we will simplify it by writing just match+).

The idea behind the name “match” is that to “evaluate” match+(M,u.P, v.Q)
the term M : A+B should be compared to the “patterns” inl(u) and inr(v), and
according to which one it “matches” (looks like), we branch into either P or Q.
The notation match0(M) is the nullary case of this: the term M : 0 is matched
against all possible ways that a term of type 0 could be constructed — of which
there are none, and so there are no cases to consider.

Categorically, +E expresses the universal property of the coproduct as
follows. Recall that morphisms from A to B are (being derivations) represented
by variable-term pairs. Thus the morphisms A→ C and B → C are represented
by the pairs u.P and v.Q, while their copairing is a morphism A+B → C that
should be represented by a term involving a variable y : A+B. This is exactly
the data included in y : A + B ` match+(y, u.P, v.Q) : C; the general version
with x : X `M : A+B just comes from building in a cut.

Note that the variables u and v, though they “appear in the term”, are not

58 CHAPTER 1. UNARY TYPE THEORIES

the variable associated to the antecedent; we say they are bound variables. By
contrast, the antecedent variable x is free. Textually each bound variable is
associated to a subterm called its scope, delimiting the places where it can be
referred to; in +E the scope of u is P and the scope of v is Q. In terms of rules,
this just means that the variable (or more precisely, its type) may appear as the
antecedent of some, but not all, of the premises.

Bound variables are familiar in ordinary mathematics as well. For instance,

the integration variable x in a definite integral
∫ 2

0
x2 dx is bound, because the

value of the expression “doesn’t depend on x”; its scope is the expression being
integrated (but not the bounds of integration). Bound variables also occur in
function definitions: given an expression such as x2 depending on an unspecified
variable x, we may write something like (x 7→ x2) for “the function that squares
its argument”,7 which is a fully defined object containing x as a bound variable.

It is a common convention in type theory that a prefixed variable followed
by a period is bound. Our writing x : X `M : B as x.M : (X ` B) follows this
convention; the variable x is free in M , but bound in x.M , since when the term
M is paired with its variable x it represents a derivation of X ` B that does not
depend on x.

If we were using de Bruijn variables, then all the variables x, u, v here would
actually be the same, giving for instance matchA+B(M,x.f(x), x.g(x)). Although
technically fine, this can be confusing since the same unique variable x also occurs
in M itself, but unrelatedly (and with a different type) than its occurrences in
the case branches. In general, a bound variable “shadows” any free variable (or
“outer” bound variable) of the same name, so that in matchA+B(M,x.f(x), x.g(x))
the x in f(x) refers to the prefix variable (called x) in x.f(x), not to the outer
free variable occurring in M (also called x). This makes a precise and general
definition of α-equivalence in the presence of bound variables rather technically
involved; one such definition is given in §A.6.

However, it is arguably bad mathematical style to use the same name for
distinct variables, even if there is technically no ambiguity. For instance, we
encourage calculus students to write F (x) =

∫ x
0
f(t) dt rather than F (x) =∫ x

0
f(x) dx, even though technically they mean the same thing. If we adhere to

this informal convention, then we rarely need to worry about technical definitions
of α-equivalence (unless we are trying to implement mathematics in a computer).

With all of this out of the way, we can now consider the appropriate β- and
η-conversion rules. However, we pause first to prove admissibility of cut, i.e. to
construct substitution, as in this case we will need substitution to state the β
and η rules.

Lemma 1.5.1. Substitution is admissible in the unary type theory for categories
with coproducts under G. That is, if we have derivations of x : A `M : B and
y : B ` N : C, we can construct a derivation of x : A ` N [M/y] : C.

Proof. By induction over derivations. As usual for natural deduction theories,
there is not much happening: for each rule that might appear last in the

7A more common notation for (x 7→ x2) in type theory is λx.x2; see §2.8.

1.5. CATEGORIES WITH COPRODUCTS 59

derivation of y : B ` N : C, we apply the inductive hypothesis to its premises
and then re-apply the final rule. The defining equations of the substitution
operation are:

y[M/y] = M

f(N)[M/y] = f(N [M/y])

match0(N)[M/y] = match0(N [M/y])

inl(N)[M/y] = inl(N [M/y])

inr(N)[M/y] = inr(N [M/y])

match+(N, u.P, v.Q)[M/y] = match+(N [M/y], u.P, v.Q)

Now we proceed to β- and η-conversion. Dualizing the β-conversion rules
for products, the β-conversion rules for coproducts should say that the map
A + B → C induced by f : A → C and g : B → C yields f and g when
composed with the coproduct injections. Recalling that composition is given by
substitution, this leads us to write down

match+(inl(y), u.P, v.Q) ≡ P [y/u]

match+(inr(z), u.P, v.Q) ≡ Q[z/v]

Similarly, the η-conversion rule8 should say that morphisms out of a coproduct
are determined uniquely by their composites with the projections:

match+(y, u.P [inl(u)/y], v.P [inr(v)/y]) ≡ P (1.5.2)

and similarly that morphisms out of the initial object are unique:

match0(y) ≡ P.

In fact, to ensure that ≡ is a congruence, we should “build in a cut” to all
of these rules, so that the antecedent of the conclusion is an arbitrary type.
Thus the actual generating ≡ rules are those shown in Figure 1.4. As usual, we
also require ≡ to be an equivalence relation and a congruence for substitution.
This completes the definition of our unary type theory for categories with
coproducts under G.

As in the dual case, by a category with coproducts we mean a category
with specified binary coproducts and a specified initial object, and in the category
of such the functors preserve the specified structure strictly.

8In fact, for types such as coproducts with a left universal property, there is no consensus
on exactly what equality “η” refers to. From a categorical point of view this equality is
the most natural, since like the η-conversion rule for products it expresses the uniqueness
aspect of the universal property. But sometimes η is used to refer only to the special case
match+(y, u.inl(u), v.inr(v)) ≡ y, which is also analogous to the η rule for products in that it
says that elements of the type in question have a canonical form (a pair in a product or a case-
split in a coproduct). The stronger property is equivalent to the weaker property combined with
“commuting conversions” such as inl(match+(M,u.P, v.Q)) ≡ match+(M,u.inl(P), v.inl(Q)).

60 CHAPTER 1. UNARY TYPE THEORIES

u : A ` P : C v : B ` Q : C x : X `M : A

x : X ` match+(inl(M), u.P, v.Q) ≡ P [M/u] : C

u : A ` P : C v : B ` Q : C x : X ` N : B

x : X ` match+(inr(N), u.P, v.Q) ≡ Q[N/v] : C

x : X `M : A+B y : A+B ` P : C

x : X ` match+(M,u.P [inl(u)/y], v.P [inr(v)/y]) ≡ P [M/y] : C

x : X `M : 0 y : 0 ` P : C

x : X ` match0(M) ≡ P [M/y] : C

Figure 1.4: β- and η-conversions for categories with coproducts

Theorem 1.5.3. For any directed graph G, the free category with coproducts
generated by G can be described by the unary type theory for categories with
coproducts under G: its objects are the derivations of ` A type, and its morphisms
A→ B are the derivations of A ` B (or equivalently the derivable term judgments
x : A `M : B modulo α-equivalence), modulo the equivalence relation ≡.

Proof. This is basically just like the proof of Theorem 1.4.13, with one slight
twist. Lemma 1.5.1 defines substitution, and the same sort of induction proves it
associative and unital; thus we have a category FCoprCatG. The rules are defined
just so as to give this category the structure of coproducts. Then, given any
category with coproducts M and map of graphs P : G →M, we extend P to a
unique coproduct-preserving functor FCoprCatG →M by successive inductions
over all the derivations of the type theory.

The twist is that we have to be careful about the order in which we do this.
Because the rules for ≡ involve the substitution operation on terms, to interpret
these rules using the universal properties in M we need to know already that
substitution maps to composition inM. Thus we need to (1) extend P to types,
(2) extend P to terms, (3) then prove that this extension takes substitution to
composition, (4) then inductively show that derivations of x : A `M ≡ N : B
map to equal morphisms, and (5) then complete the proof that we have a functor
preserving coproducts.

Exercises

Exercise 1.5.1. This is the dual of Exercise 1.4.1, though of course its proof is
not dual. Suppose we have

f ∈ G(A,C) g ∈ G(B,D) h ∈ G(C,E) k ∈ G(D,E)

1.6. UNIVERSAL PROPERTIES AND MODULARITY 61

Here is one (cut-free) derivation of A+B ` E.

A+B ` A+B

A ` A
A ` C

f

A ` E
h

B ` B
B ` D

g

B ` E
k

A+B ` E
+E

Write down another derivation of A+B ` E that ends with the following cut:

...

A+B ` C +D

...

C +D ` E
A+B ` E

cut

Then write down the terms corresponding to the two derivations and show
directly that they are related by ≡.

Exercise 1.5.2. A functor P : A → B is called an opfibration if P op : A op →
M op is a fibration (as in Exercise 1.4.4). The dual of f∗(b) is written f!(a).

(a) Write down a type theory for opfibrations and prove the initiality theorem.
(Remember that we always use natural deduction style when dealing with
categories rather than posets, so you can’t just dualize Exercise 1.4.4 or
categorify Exercise 1.3.10. You will probably want a term syntax such as
“match!”.)

(b) Use this type theory to prove that f! is always a functor.

1.6 Universal properties and modularity

This seems an appropriate place to introduce some more type-theoretic lingo.
Roughly speaking, types corresponding to objects with “mapping out” universal
properties, such as A + B, are called positive, while types corresponding to
objects with “mapping in” universal properties, such as A × B, are called
negative. The precise meanings of these terms relate to “focusing” and are
more directly applicable to sequent calculus than to natural deduction, but they
are often used informally in this broad sense, and we will sometimes do the same.

Another important thing to note is a similarity in structure between the
product types of §1.4 and the coproduct types of this section. Both of them
augment the basic cut-free type theory for categories from §1.2.2 with four kinds
of rules:

(a) Formation rules for the judgment ` A type, which tell us how to “form”
the new types described by this operation (product types or coproduct
types):

` A type ` B type

` A×B type

` A type ` B type

` A+B type

62 CHAPTER 1. UNARY TYPE THEORIES

(b) Introduction rules for the term judgment, which tell us how to “introduce”
terms belonging to such a new type:

x : X `M : B x : X ` N : C

x : X ` 〈M,N〉 : B × C
×I

x : X `M : A

x : X ` inl(M) : A+B
+I1

x : X ` N : B

X ` inr(N) : A+B
+I2

(c) Elimination rules for the term judgment, which tell us how to “eliminate”
a term belonging to a new type to obtain terms belonging to other types:

x : X `M : B × C
x : X ` πB,C1 (M) : B

×E1
x : X `M : B × C
x : X ` πB,C2 (M) : C

×E2

x : X `M : A+B u : A ` P : C v : B ` Q : C

x : X ` matchA+B(M,u.P, v.Q) : C
+E

(d) Conversion (or computation) rules for the equality judgment, which tell
us how to “convert” or “reduce” terms built by combining the introduction
and elimination rules:

πA,B1 (〈M,N〉) ≡M πA,B2 (〈M,N〉) ≡ N 〈πA,B1 (M), πA,B2 (M)〉 ≡M

match+(inl(y), u.P, v.Q) ≡ P [y/u] match+(inr(z), u.P, v.Q) ≡ Q[z/v]

match+(y, u.P [inl(u)/y], v.P [inr(v)/y]) ≡ P

This division into four groups of rules for each type operation corresponds to
the following four aspects of a category-theoretic universal property:

(a) The existence of one or more objects given certain input data (formation).

(b) Some data relating those objects to others that we already had, like the
projections of a product or the injections of a coproduct (elimination for
negative types, introduction for positive ones).

(c) A “factorization” operation: given data of some sort, there exist specified
morphism(s) into or out of the new objects (introduction for negative types,
elimination for positive ones).

(d) These specified morphism(s) satisfy some compatibility conditions with the
given data that uniquely determine them (conversion).

This provides a template for representing other category-theoretic universal
properties with type theory. (What if we want to represent something that
doesn’t have a universal property, like a monoidal structure? As we will see in

1.7. PRESENTATIONS AND THEORIES 63

chapter 2, the answer is to move into a different world where it does have a
universal property.)

Finally, I want to emphasize the modularity of these rules (in the computer
scientist’s sense). When we added the rules for products to the cut-free type
theory for categories, the proofs of the basic theorems like cut admissibility,
associativity of substitution, and the initiality theorem did not change in their
overall structure. They were all still proved by induction on derivations; we
simply had to add new clauses to each induction step corresponding to the new
rules.

The advantage of this sort of modularity means that we are free to “mix
and match” rules of our type theory, corresponding to the categorical universal
properties we want to have. There will be more scope for variety with this later,
but at the moment there is one new combination: we can obtain a type theory
for categories with products and coproducts by simply combining the
rules from §§1.4 and 1.5. We can then prove all the same theorems, including
the fact that this type theory presents the free category with products and
coproducts on a directed graph, by simply combining the relevant clauses from
all the proofs in §§1.4 and 1.5.

Exercises

Exercise 1.6.1. Suppose we have

f ∈ G(A,C) g ∈ G(A,D) h ∈ G(B,C) k ∈ G(B,D)

Write down two different derivations of A+B ` C ×D in the type theory for
categories with products and coproducts under G, one that ends with ×I and
one that ends with +E. Then write down the corresponding terms and show
directly that they are identified by ≡.

Exercise 1.6.2. A functor P : A → B is called a bifibration if it is both a
fibration and an opfibration.

(a) Combine the theories of Exercises 1.4.4 and 1.5.2 to obtain a type theory
for bifibrations.

(b) If you aren’t tired of proving initiality theorems yet, do it for this type
theory.

(c) Use this type theory to prove that in any bifibration, f! is left adjoint to f∗.

1.7 Presentations and theories

Now that we have a type theory for categories with products, we might hope
that we could express in it the proof from §0.1 of uniqueness of inverses for
monoid objects. However, the theory as presented in §1.4 is inadequate even to
talk about monoid objects!

64 CHAPTER 1. UNARY TYPE THEORIES

Let us recall briefly how we use initiality theorems to deduce categorical facts.
Suppose we want to prove a theorem of the form “for any objects A,B,C, . . .
and morphisms f, g, h, . . . in a category with products, we have . . . ”. Then
we let G be a directed graph with one vertex for each object appearing in the
theorem and one edge for each morphism, with appropriate source and target,
and we reason in the type theory for categories with products under G. Then
whenever we have objects and morphisms of the sort described in the theorem
in any other category M with products, we get a map G →M, which therefore
extends to the free category FPrCatG presented by the type theory, and this
extension carries our type-theoretic constructions and proofs to categorical ones.

However, although theorems about monoid objects are intuitively of the form
“for any object A and morphisms m, e, . . . ”, they do not fit into this picture,
because the data cannot be described as a directed graph. The problem is that
the source and target of m and e are not single objects mentioned in the theorem,
but products of them (specifically, m : A×A→ A and e : 1→ A). Furthermore,
a monoid object contains not just objects and morphisms, but axioms about
composites of those morphisms, which the type theory of §1.4 is also unable to
deal with.

We now present an extension of this theory which does suffice to discuss
monoid objects. It is not the final word on the matter — as we will see, the type
theories of chapter 2 can do somewhat better — but it is a first step.

The two problems mentioned above are in fact quite similar. To talk about a
morphism m : A×A→ A, say, using type theory, we need to replace directed
graphs with some more general structure including “arrows” whose source and
target can be products of “generating objects” rather than just single ones.
Similarly, to talk about an axiom such as m(x,m(y, z)) = m(m(x, y), z), we need
to also include “generating equalities” that relate “pairs of parallel morphisms”,
and these morphisms could also be products and composites of generating ones.
(This is an instance of the higher-categorical philosophy that equalities are just
a kind of higher morphism.)

This sort of refinement can be performed for essentially any type theory;
it is a sort of syntactic version of the categorical notion of “computads” and
related structures [Bat98, Gar10, nLa16]. The idea as just sketched is fairly
straightforward, but the execution is a bit complicated, because we have to
define the sort of “generating structure” (a generalization of a directed graph)
step-by-step in parallel with the type theory that it generates. Thus, we begin
with a couple of simpler cases.

1.7.1 Group presentations

Categorically, what we are about to do is talking about presented categories
rather than free ones. However, the way we’re doing it is perhaps not the most
common way to talk about “presentations” in category theory. Consider for
instance the most well-known sort of presentation, namely a presentation of a
group; this consists of a set X of generating elements together with a set R

1.7. PRESENTATIONS AND THEORIES 65

of “relations”, each of which is a pair9 of elements of the free group on X, i.e.
R ⊆ FX×FX. For instance, the dihedral group Dn is presented by X = { x, y }
and R =

{
(xn, e), (y2, e), (xyxy, e)

}
.

The question is, exactly what group does a group presentation present, and
what is its universal property? The more common way to answer this question
category-theoretically is to consider the two projections R ⇒ FX, note that
by the universal property of free groups they yield two group homomorphisms
FR⇒ FX, and define the presented group 〈X | R〉 to be the coequalizer of these
two morphisms in the category of groups. While this works, it requires a bit of
unraveling to extract the universal property of 〈X | R〉.

When we come to dependent type theories, we will be forced to use a procedure
like this, but until then we can package the universal property of a presented
object more explicitly using an adjunction. In the case of groups, what we would
do is define the category of group presentations, whose objects are presentations
(X,R) as above, and whose morphisms (X,R)→ (Y, S) are functions g : X → Y
such that R ⊆ (Fg × Fg)−1(S), i.e. each relation in R is mapped by g to a
relation in S. Then we define, for each group G, its underlying or canonical
presentation (G,KG), in which the set of generators is the underlying set of
G itself, and KG is the “kernel pair” of the counit FG → G of the free-group
adjunction (i.e. its pullback against itself). More explicitly, KG is the set of all
pairs (w1, w2) of elements of FG that when “multiplied out” become equal in G.

Now the group presented by a group presentation is simply its image under
the left adjoint to this forgetful functor from groups to presentations. This
gives an explicit description of its universal property: a map of presentations
(X,R) → (G,KG) is, by definition, a function X → G such that the image of
each relation in R is “true” in G, i.e. the composites R⇒ FX → FG→ G are
equal.

Before we move on to categories, we note a few things about this construction.
Firstly, this adjunction subsumes the adjunction between groups and sets, because
any set X gives rise to a group presentation (X, ∅) with no relations, and the
corresponding presented group is just the free group on X. However, we needed
to already have the simpler adjunction between groups and sets in order to
construct this more refined adjunction between groups and presentations; we
used free groups in the definition of a group presentation, and we used the
universal property of free groups in defining the underlying presentation of a
group.

Secondly, the underlying presentation of a group actually presents that
group, i.e. the counit of the adjunction between presentations and groups is
an isomorphism. Equivalently, by general categorical facts, the “underlying
presentation” functor from groups to presentations is fully faithful. Thus, if we
wanted to, we could regard groups as “being” certain group presentations whose
relations are “saturated” in a suitable sense, with the adjunction exhibiting such

9In the case of groups, an equality g = h is equivalent to an equality gh−1 = e, so it is
common to take the relations to be single elements of the free group on X rather than pairs
thereof. However, when we generalize to other algebraic structures this is no longer true, so
we stick with the more general version even for groups.

66 CHAPTER 1. UNARY TYPE THEORIES

“groups” as a reflective subcategory of group presentations.
On the other hand, this also means that the left adjoint from presentations

to groups is essentially surjective. Therefore, if we define a new category
whose objects are group presentations and whose morphisms are the group
homomorphisms between the groups they present, we obtain a category equivalent
to the category of groups. A slightly less tautological-sounding definition of the
morphisms in this category uses the adjunction: a group homomorphism from
〈X | R〉 to 〈Y | S〉 is the same as a morphism of presentations from (X,R) to
the underlying presentation of 〈Y | S〉. Such a thing can be described a bit more
explicitly: it is a function X → FY which maps each relation in R to a relation
that holds in 〈Y | S〉.

More categorically, the observation is that any adjunction F : C � D : G
whose counit is an isomorphism is “opmonadic”, i.e. exhibits D as equivalent
to the Kleisli category of the induced monad GF on C. (The fact that D is
equivalent to a reflective subcategory of C implies that the adjunction is also
monadic, with the monad GF being idempotent. Moreover, every algebra for
an idempotent monad is free, so the Kleisli and Eilenberg–Moore categories are
equivalent.)

Most of these observations have analogues in the type-theoretic situation, to
which we now turn.

1.7.2 Category presentations

We begin with presentations of categories, which are formally quite similar to
presentations of groups, except for the presence of “many objects” and the
absence of inverses. However, rather than taking the “free category on a directed
graph” as a black box, the way we did for the free group on a set in §1.7.1, we
will use its explicit presentation using the cut-free type theory of §1.2.2. This
enables an analogous type-theoretic presentation of the left adjoint constructing
a presented category from a presentation.

Recall from Theorem 1.2.13 that the free category FCatG generated by a
directed graph G has the same objects as G and its morphisms are the derivable
term judgments x : A ` M : B (i.e. derivations of A ` B) in the cut-free type
theory for categories under G.

Definition 1.7.1. A category presentation P consists of a directed graph
P1 together with a set P2 of generating equalities, each of which is a pair of two
derivations of A ` B for some A,B ∈ G.

Equivalently, each generating equality is two terms M,N such that x : A `
M : B and x : A ` N : B are both derivable, or (more category-theoretically)
two parallel morphisms in the free category on G.

Definition 1.7.2. For a category C, its underlying presentation is the un-
derlying directed graph of C with, as generating equalities, the set of all parallel
pairs of morphisms in FCatC that become equal after applying the counit functor
FCatC → C.

1.7. PRESENTATIONS AND THEORIES 67

x : X `M : A

x : X `M ≡M : A

x : X `M ≡ N : A

x : X ` N ≡M : A

x : X `M ≡ N : A x : X ` N ≡ P : A

x : X `M ≡ P : A

f ∈ P1(A,B) x : X `M ≡ N : A

x : X ` f(M) ≡ f(N) : B

x : X `M : A P2(y : A,B)(N,P)

x : X ` N [M/y] ≡ P [M/y] : A

Figure 1.5: Equality rules for category presentations

For a category presentation P, we write P2(x : A,B)(M,N) to mean that
(M,N) ∈ P2 where both x : A `M : B and x : A ` N : B. Now we define the
type theory for categories under P to consist of the cut-free type theory
for categories under the directed graph P1 together with the rules for an equality
judgment shown in Figure 1.5. Recall that the cut-free type theory for categories
didn’t need an equality judgment on its own, so the only rules other than
the “generator” one (the last one) are reflexivity, symmetry, transitivity, and
congruence. (As mentioned in §1.4, we often omit these rules, but we include
them here because we are doing something a bit new with an equality judgment.)

The generator rule basically says that each generating equality yields an
actual equality. Note that we have built in a substitution on the left. This ensures
that ≡ remains a congruence for substitution on both sides as in Lemma 1.4.11
(the other side is ensured by the primitive congruence rules for ≡).

Theorem 1.7.3. For any category presentation P, the free category generated
by P (i.e. the image of P under the left adjoint to the underlying-presentation
functor) is described by the type theory for categories under P: its objects
are those of P, and its morphisms are the derivations of A ` B modulo the
equivalence relation ≡.

Proof. As usual, the rules for equality ensure that it is an equivalence relation
and a congruence, so that the quotient is a category. Now suppose given a
category C and a morphism from P to the underlying presentation of C. Then
Theorem 1.2.13 gives a unique functor from the free category on P1 to C, so
it suffices to check that this functor descends to the quotient by ≡. This is a
straightforward induction over derivations of ≡. All the basic rules of equality
are always true in C, while the generator one is true since P → C is a morphism
of presentations.

As in §1.7.1, the counit of this adjunction is easily shown to be an isomor-

68 CHAPTER 1. UNARY TYPE THEORIES

phism. Thus we can regard categories as a reflective subcategory of category
presentations, or we can show that the category of categories is equivalent to
the Kleisli category of the induced monad on category presentations.

1.7.3 ×-presentations

Now we move on to the case of categories with products. Here there are three
stages rather than two, since we have to add the operations on objects as well.
Thus, instead of two adjunctions (with base categories of directed graphs and
category presentations, respectively) we will have three. For the moment, we will
call the objects of the base categories k-skeletal (unary) ×-presentations
for k = 0, 1, 2; in §1.7.4 we will introduce some more standard terminology.

Definition 1.7.4. A 0-skeletal ×-presentation is a set, P0.

The type theory of a 0-skeletal ×-presentation consists of the rules for type
judgments from §1.4:

A ∈ P0

` A type ` 1 type

` A type ` B type

` A×B type

We write F0P0 for the set of derivable types in this theory (later on we will see
that it is indeed some kind of free thing generated by P0).

Definition 1.7.5. A 1-skeletal ×-presentation consists of a 0-skeletal ×-
presentation P0 (its 0-skeleton) together with a set of arrows P1, each of which
is assigned a source and a target that are types in the type theory of P0.

Thus, for instance, a 1-skeletal ×-presentation could contain objects A,B
and arrows f : A×B → B ×B and g : 1→ A.

The type theory of a 1-skeletal ×-presentation consists of the rules for term
judgments x : A `M : B from §1.4. The generator rule

x : X `M : A f ∈ P1(A,B)

x : X ` f(M) : B
f

looks the same as before, but now it no longer implies as a side condition that
A and B must be base types. We prove exactly as before that terms have
unique derivations and that substitution is admissible and associative. We write
F1P1(A,B) for the set of derivations/terms x : A `M : B in this theory.

Definition 1.7.6. A 2-skeletal ×-presentation consists of a 1-skeletal ×-
presentation P≤1 (its 1-skeleton) together with a set of generating equalities P2,
each of which is a pair of derivations of the same judgment A ` B in the type
theory of P≤1.

Since this is the last step, we sometimes omit the adjective “2-skeletal” and
just speak of (unary) ×-presentations. We write P2(x : A,B)(M,N) to mean
that (M,N) is a generating equality, where x : A `M : B and x : A ` N : B.

1.7. PRESENTATIONS AND THEORIES 69

The type theory of a ×-presentation consists of the rules for the equality
judgment ≡ from §1.4, together with a generator rule for equalities:

x : X `M : A P2(y : A,B)(P,Q)

x : X ` P [M/y] ≡ Q[M/y] : B
(1.7.7)

As before, we have built in a substitution on the left.
We once again prove all the expected properties, like type-checking and

cut admissibility, just as we did for the ordinary type theory for categories
with products in §1.4. However, stating and proving the initiality theorem is
somewhat more complicated.

Of course, generalizing from the situation of §1.7.2 we expect to have three
adjunctions, whose base categories consist of k-skeletal ×-presentations for
k = 0, 1, 2. However, unlike in §1.7.2 the other category cannot be PrCat
for all three adjunctions, since the type theories of 0-skeletal and 1-skeletal ×-
presentations are not yet categories with products. A 0-skeletal ×-presentation
does not even give rise directly to a category; we could make it one by adding
identity morphisms, but it still wouldn’t have products. And a 1-skeletal ×-
presentation does give a category, but without the β- and η-conversion laws
(which only appear at the final stage with the equality judgment) the structure
it has is weaker than having products.

To start with, in order to have adjunctions, we need categories of ×-
presentations.

Definition 1.7.8.

(a) A morphism of 0-skeletal ×-presentations is just a function K0 : P0 → Q0.
This induces a function K0 : F0P0 → F0Q0 by a simple induction.

(b) A morphism of 1-skeletal ×-presentations is a morphism K0 : P0 → Q0

on 0-skeleta, together with a function K1 : P1 → Q1 respecting sources
and targets (relative to K0). This induces maps K1 : F1P1(A,B) →
F1Q1(K0(A),K0(B)) by another simple induction.

(c) Finally, a morphism of 2-skeletal ×-presentations is a morphism K≤1 :
P≤1 → Q≤1 on 1-skeleta, together with a function K2 : P2 → Q2 respecting
sources and targets (relative to K1).

We write Pres×,k for the category of k-skeletal ×-presentations.

Now, since ×-presentations are defined inductively on their skeleta, it is
most natural to prove the initiality theorem in stages as well. For this purpose
we need skeletal versions of “categories with products” as well. The idea is
that “1-skeletal categories with products”, for instance, should have exactly
the categorical structure induced by the type and term judgments without any
equality judgments. In particular, they have pairings and projections, but these
don’t satisfy the β- and η-conversion laws. The pairings do, however, have to be
natural in the domain, since that comes from substitution which is defined and
associative already on terms before we have any ≡.

70 CHAPTER 1. UNARY TYPE THEORIES

Definition 1.7.9.

(a) A 0-skeleton for a category with products is a setM0 with a specified
element 1 ∈M0 and a binary operation (−×−) :M0 ×M0 →M0.

(b) A 1-skeleton for a category with products is

(i) A 0-skeleton for a category with products, M0;

(ii) A category M with M0 as its set of objects;

(iii) For every A,B ∈M0, morphisms A×B → A and A×B → B;

(iv) For every A,B ∈M0, a natural transformationM(−, A)×M(−, B)→
M(−, A×B); and

(v) A natural transformation 1→M(−,1), where 1 denotes the terminal
presheaf.

(c) A 2-skeleton for a category with products is just a category with
products.

We write PrCatk for the category of k-skeleta for a category with products (in
which we trust the reader to define the morphisms).

We will construct the following ladder of adjunctions, in which the both the
left and right adjoints commute with the obvious downward-pointing forgetful
functors:

Pres×,2

F2 //
⊥

��

PrCat2

U2

oo

��

Pres×,1

F1 //
⊥

��

PrCat1

U1

oo

��

Pres×,0

F0 //
⊥ PrCat0

U0

oo

In fact, we will define all the horizontal functors one by one from bottom to
top: first U0, then F1, then U1, etc, and show one step at a time that we get
adjunctions.

Definition 1.7.10. The forgetful functor U0 : PrCat0 → Pres×,0 takes a
0-skeleton for a category with products to its underlying set.

Theorem 1.7.11. The left adjoint F0 of U0 takes a 0-skeletal ×-presentation
P0 to the set of types ` A type derivable in its type theory.

Definition 1.7.12. The forgetful functor U1 : PrCat1 → Pres×,1 acts as U0

on underlying 0-skeleta, and for types A,B in the type theory of U0M we define
U1(A,B) to be the set of morphisms inM between the images of A and B under
the counit map F0U0M0 →M0.

1.7. PRESENTATIONS AND THEORIES 71

Theorem 1.7.13. The left adjoint F1 of U1 acts as F0 on 0-skeleta, and the
morphisms in F1P are the derivations x : A `M : B in the type theory of P.

Proof. We sketch the proof, with the goal of explaining the naturality requirement
in the definition of 1-skeleta for categories with products. First we have to
show that F1P is indeed such a 1-skeleton. Note that the proofs in §1.4 that
substitution/cut is associative and unital as an operation on terms/derivations
before we impose any equality judgment; thus the present F1P is a category.
Moreover, the term operations π1, π2, 〈−,−〉, and ∗ give F1P the structure of
a 1-skeleton for a category with products. The naturality of these operations
is simply the fact that they commute with substitution, e.g. 〈P,Q〉[M/x] =
〈P [M/x], Q[M/x]〉. Since this is true essentially by definition of substitution, it
is a literal equality of terms/derivations.

Now let C be any 1-skeleton for a category with products, and let ω : P →
U1C be a morphism of 1-skeletal ×-presentations. We extend it to a map
ω0 : F0P0 → C0 of 0-skeleta for categories with products using Theorem 1.7.11.
Then we extend this to ω1 : F1P → C by induction on the term-forming
operations, using the assumed structure of C. For instance, to define ω1 on a
term x : X ` 〈M,N〉 : A×B, we inductively define it on the terms x : X `M : A
and x : X ` N : B, then apply the pairing operation

C(X,A)× C(X,B)→ C(X,A×B)

of C. The other cases are similar.
We use the naturality of these operations in C when proving prove that

this operation is a functor. For instance, the composite of y : Y ` Q : X and
x : X ` 〈M,N〉 : A×B is 〈M,N〉[Q/y], which is by definition 〈M [Q/y], N [Q/y]〉
By induction, we may assume that ω(M [Q/y]) and ω(N [Q/y]) are the composites

ω(Y)
ω(Q)−−−→ ω(X)

ω(M)−−−→ ω(A) and ω(Y)
ω(Q)−−−→ ω(X)

ω(N)−−−→ ω(B). And by
naturality, the pairing of these two composite morphisms in C is equal to the
result of first pairing ω(M) and ω(N) and then composing with ωQ, which is to
say

ω(〈M [Q/y], N [Q/y]〉) = ω(〈M,N〉) ◦ ω(Q).

The other cases of functoriality are analogous. Finally, ω is obviously a morphism
of 1-skeleta for categories with products, and it is unique for the usual reasons.

Definition 1.7.14. The forgetful functor U2 : PrCat2 → Pres×,2 acts as U1

on underlying 1-skeleta, and two parallel terms x : A `M : B and x : A ` N : B
in the type theory of U1M are related by a generating equality if and only if
their images under the counit map F1U1M→M are equal.

Theorem 1.7.15. The left adjoint F2 of U2 is defined by applying F1 to underly-
ing 1-skeleta, then quotienting by the equivalence relation of derivable judgments
x : A `M ≡ N : B.

Proof. The main point is that a category with products (in our strict sense
with chosen binary and nullary products) is exactly a 1-skeleton for a category

72 CHAPTER 1. UNARY TYPE THEORIES

with products that satisfies categorical versions of the β- and η-conversion rules.
Thus, F2P is indeed a category with products, and we can extend ω to it by
induction on derivations of equality.

This is a bit abstract, so let’s consider our motivating example. The ×-
presentation for monoid objects should have one object A ∈ P0 and two arrows,
m ∈ P1(A × A,A) and e ∈ P1(1, A). It should have three equalities, for
associativity and the two unit laws; but what terms do they relate? Consider
associativity: we need two terms x : (A× A)× A ` M : A expressing the two
ways to multiply the three components of x. (Note that we also had to chose,
arbitrarily, a particular way to associate the triple cartesian product.) First, of
course we have to extract those components using π1 and π2. Then we have to
multiply them in pairs, noting that since the source of m is A×A we have to
pair things up before we can apply m to them. This leads us to the terms

x : (A×A)×A ` m(〈m(〈π1(π1(x)), π2(π1(x))〉), π2(x)〉) : A

x : (A×A)×A ` m(〈π1(π1(x)),m(〈π2(π1(x)), π2(x)〉)〉) : A

so one of our generating equalities will relate these two terms. The unit laws are
simpler; one relates

x : A ` m(〈x, e(∗)〉) : A and x : A ` x : A

and the other relates

x : A ` m(〈e(∗), x〉) : A and x : A ` x : A

This completes the definition of the ×-presentation of monoids. For brevity
we may write its generating equalities as

x : (A×A)×A ` m(〈m(〈π1(π1(x)), π2(π1(x))〉), π2(x)〉)
≡ m(〈π1(π1(x)),m(〈π2(π1(x)), π2(x)〉)〉) : A

x : A ` m(〈x, e(∗)〉) ≡ x : A

x : A ` m(〈e(∗), x〉) ≡ x : A

as long as we don’t forget that the actual rule (1.7.7) builds in a substitution.
Let us write this ×-presentation as T . Definition 1.7.14 tells us that a

morphism of ×-presentations ω : T → U2M, for any category with products M,
is exactly a monoid object in M.

More explicitly, first we choose to interpret the base type A as some object
ω(A) ∈M. This means choosing a morphism on 0-skeleta T0 → U0M0.

Second, we extend this interpretation inductively to other types using the
chosen products in M, so that for instance A×A and 1 are sent to the chosen
product ω(A) × ω(A) and terminal object 1 in M. This means considering
the adjunct morphism F0T0 → M0, which factors as the composite F0T0 →
F0U0M0 →M0.

1.7. PRESENTATIONS AND THEORIES 73

Third, we choose to interpret the generating arrows m and e as morphisms
ω(A)×ω(A)→ ω(A) and 1→ ω(A) inM. Technically, we are interpreting them
as arrows in U1M1 compatibly with the map F0T0 → F0U0M0 on their domains
and codomains, but arrows in U1M1 are induced by the counit F0U0M0 →M0,
so this really means arrows in M as shown. This gives a morphism T1 → U1M1.

Fourth, we extend this interpretation to other terms, such as those appearing
in the above, sending them to other morphisms in M. This means considering
the adjunct morphism F1T1 → M1, which again factors through the counit
F1U1M1 →M1.

Finally, we assert that the generating equalities in T are sent to equalities
in M, or technically in U2M. Unwinding the definitions shows that the two
associativity terms really are sent to the two morphisms (ω(A)×ω(A))×ω(A)→
ω(A) that the associativity of a monoid object should equate, and similarly for
the unit terms. Thus, we have precisely specified a monoid object in M.

It now follows from Theorem 1.7.15 that F2T is the free category with
products generated by a monoid. Thus, a monoid object in M also induces a
functor ω : F2T →M. Since derivations of equalities yield equal morphisms in
F2T , it follows that any equation we can derive in this theory will be true of
any monoid object in any category with products.

If we want to reproduce the uniqueness-of-inverses proof from §0.1, we need to
further augment our ×-presentation with two inverse operations i, j ∈ T1(A,A)
and equalities such as

x : X ` m(〈x, i(x)〉) ≡ e(∗) : A

The proof of uniqueness now looks like:

i(x) ≡ m(〈i(x), e(∗)〉)
≡ m(〈i(x),m(〈x, j(x)〉)〉)
≡ m(〈π1(π1(〈〈i(x), x〉, j(x)〉)),m(〈π2(π1(〈〈i(x), x〉, j(x)〉)), π2(〈〈i(x), x〉, j(x)〉)〉)〉)
≡ m(〈m(〈π1(π1(〈〈i(x), x〉, j(x)〉)), π2(π1(〈〈i(x), x〉, j(x)〉))〉), π2(〈〈i(x), x〉, j(x)〉)〉)
≡ m(〈m(〈i(x), x〉), j(x)〉)
≡ m(〈e(∗), j(x)〉)
≡ j(x).

If it weren’t for those two horrific-looking terms in the middle, the rest of the
calculation looks pretty much like the argument as we gave it in §0.1. The
horrific-looking terms are there because we can only apply the associativity of
m to a single term belonging to (A×A)×A, so we need to tuple up the terms
i(x), x, and j(x) and replace them by the projections from that tuple (using
β-conversion).

In chapter 2 we will remedy this problem by introducing a type theory that
allows us to state associativity (and m itself) without tupling — and, incidentally,
remove much of the complication of this section by eliminating the need for
products in the domains and codomains of generating arrows entirely.

74 CHAPTER 1. UNARY TYPE THEORIES

Now, in §§1.7.1 and 1.7.2 we observed that the counit of the adjunction
for presentations was an isomorphism. In the case of ×-presentations, this
adjunction is now only an equivalence.

Theorem 1.7.16. For any category with productsM, the functor F2U2M→M
is an equivalence of categories.

Proof. The definitions of U0, U1, and U2 are cooked up precisely so as to make
this functor surjective on objects, full, and faithful respectively. That is, U0M
contains all the objects of M, so that the counit ε0 : F0U0M → U0M is
surjective — though not injective, since F0U0M contains new types such as
“A × B” for A,B ∈ M, which is distinct from the specified product of the
objects A and B in M. Then for any types A,B, U1M(A,B) contains all the
morphisms ofM between their images inM, so the counit ε1 : F1U1M→ U1M
is full — though not faithful, since F1U1M also contains new terms such as
x : A ` g(f(x)) : C for f : A→ B and g : B → C in M, which is distinct from
x : A ` (g ◦ f)(x) : C for the composite g ◦ f of morphisms in M. Finally, U2M
equates all terms whose images in M are equal, so that when we quotient by ≡
the counit ε2 : F2U2M→ U2M becomes faithful as well.

In other words, the functor F2 : Pres×,2 → PrCat is bicategorically es-
sentially surjective. Unfortunately, while PrCat can naturally be enhanced
to a 2-category, Pres×,2 cannot except in the trivial way with only identity
2-cells; and while we can consider F2 to be a functor of bicategories with trivial
domain, there is no way to extend U2 to a functor of bicategories. Thus, we
cannot regard categories with products as a reflective subcategory (or even
reflective sub-bicategory) of ×-presentations. However, we can still construct a
bicategory that is (bicategorically) equivalent to PrCat and whose objects are
×-presentations, by taking the hom-category from P to Q to be the hom-category
PrCat(F2(P),F2(Q)). In fact, this bicategory is a strict 2-category, and its
underlying 1-category is the Kleisli category of the induced monad on Pres×,2;
we are just observing that the latter category can be enhanced to a 2-category
in order to make the adjunction “bicategorically opmonadic”.

Remark 1.7.17. The construction of ×-presentations, given the ordinary unary
type theory for categories with products under directed graphs, while somewhat
involved, is quite general and can be applied to pretty much any type theory with
an initiality theorem. We will not attempt to make this generality precise, but the
approach is similar to the general theory of computads in higher category theory;
see [Bat98, Gar10, nLa16]. For instance, by starting from the type theory for
categories with coproducts instead, we obtain a notion of unary +-presentation;
while starting from the theory of §1.6 for categories with both products and
coproducts, we obtain a notion of unary (×,+)-presentation. We will discuss
some more important special cases in §§2.9 and 2.10.

Remark 1.7.18. It is worth noting that ×-presentations as defined here have a
minor problem from a type-theoretic standpoint: if we try to formulate a sequent
calculus version of their type theories with the same generator rules as before,

1.7. PRESENTATIONS AND THEORIES 75

we find that cut is no longer admissible. For instance, if f ∈ P1(A,B×C), there
is no way to simplify a cut like the following:

X ` A
X ` B × C

f
B ` Y

B × C ` Y
×L

X ` Y
cut

That is, if we have generating morphisms whose codomains are products, then
their composites with projections cannot be “simplified”. In a natural deduction
theory, this problem manifests as a lack of “canonical forms” relative to β- and
η-conversion.

A common way to deal with this is to simply formulate the cut-elimination
theorem in a form like “all cuts except those over types appearing as the domains
or codomains of generators can be eliminated”. Or roughly equivalently, we can
modify the generator rule to build in a cut on both sides:

X ` A B ` Y
X ` Y

f ∈ T1(A,B)

With this primitive rule, the above “inadmissible” cut could be replaced by

X ` A
B ` Y

B × C ` Y
×L

X ` Y
f

In any case, this is another advantage of the multiple-antecedent type theories
to be presented in chapter 2: they will enable us to describe important theories
(such as monoids) while restricting the generating morphisms to have only base
types in their domain and codomain. (Of course we still do require generating
equalities relating complex terms rather than just generators.)

1.7.4 Theories

So far in this section we have stuck to categorical terminology, to avoid confusion.
However, the sort of objects we have introduced are more traditionally given
names arising from mathematical logic.

(a) Structures such as ×-presentations are usually called theories of an ap-
propriate sort; our ×-presentations might be called something like unary
finite-product theories. Thus, for instance, the above ×-presentation for
monoids would be called the unary finite-product theory of monoids.

(b) Their 1-skeleta, consisting of generating objects and morphisms but no
generating equalities, are usually called signatures.

(c) The generating objects are usually called sorts or types, the generating
morphisms are usually called function symbols or operations, and the
generating equalities are usually called axioms.

76 CHAPTER 1. UNARY TYPE THEORIES

(d) The underlying ×-presentation of a category with products would usually
be called its internal logic or internal type theory.

(e) A morphism from a ×-presentation P (that is, a unary finite-product theory)
into the internal logic of a category with products M is usually called a
model or an interpretation of P in M.

(f) The category with products generated by a ×-presentation is sometimes
called its syntactic category.

(g) When we make a (bi)category equivalent to PrCat, say, by taking the
objects to be the ×-presentations, the morphisms are usually known as
translations. Thus, a translation is a model of its domain in the syntactic
category of its codomain.

Thus, the equivalence obtained by “Kleisli construction” from the category
of presentations would usually be stated as something like

Taking the internal logic of a category with products yields an
equivalence between the bicategory of categories with products and
the bicategory of unary finite-product theories with translations
between them.

Such an equivalence is sometimes regarded as the ideal situation for categorical
semantics of type theories. The author’s opinion is that it is the adjunction
between presentations and categorical structures that is more fundamental
(the equivalence being obtained by a trick of redefining the morphisms in one
category); but the equivalence is certainly also important.

Other descriptions of categorical logic also tend to emphasize the “internal
logic” more than we have here. Note that the internal logic of M comes with a
canonical interpretation into M itself, given by the counit F2U2M→M; thus
anything derivable in the internal logic ofM is actually true inM. Moreover, all
the objects, morphisms, and equalities in M are “available” in its internal logic
as generators. Thus, if we only care about semantics in one category M, we can
work in this “universal type theory” generated byM, where we have “everything
from M” to work with. However, since in practice any actual argument only
involves finitely many generators, it is generally also sufficient to work with small
explicit theories, thereby making the conclusions more general.

Finally, I should point out that the word theory is quite overloaded, in a
confusing way that mixes many levels. As stated above, one generally refers to
×-presentations as theories. However, we also speak of the type theory generated
by such a presentation (e.g. what I have called the “type theory for categories
with products under a given ×-presentation”), which constructs the category
presented by that presentation. In some sense the original presentation/theory
is present “inside” this type theory, but the latter really consists of all the rules,
not just the generators.

Note also that there is a different “type theory” in this sense associated to
each presentation/theory. On the other hand, one often speaks loosely of “the

1.7. PRESENTATIONS AND THEORIES 77

type theory for categories with products”, meaning to encompass all of these
type theories associated to all presentation/theories. (The word “doctrine” has
also been used informally by Jon Beck at a similar level of generality; thus one
would say that our above theory of monoids is a “theory in the doctrine of finite
products”.) And of course, at a yet higher level one speaks of “type theory” as
a mathematical subject, like “group theory” or “category theory”, encompassing
all such “type theories” (individual collections of judgments and rules).

Finally, there is a thread in categorical logic dating back to Lawvere [Law63]
that uses the word “theory” to refer to the free category generated by a pre-
sentation. Thus, in this usage the “theory of monoids” would be the category
with products constructed from our type theory for monoids. This category
does retain all the information about the models of a theory in categories with
products, but it has lost all the information about the generating operations and
axioms. For instance, the category with products corresponding to the theory
of monoids treats binary multiplication (x, y) 7→ x · y on an equal footing with
ternary multiplication (x, y, z) 7→ x · (y · z) (or equivalently (x · y) · z) and n-ary
multiplication for all n, as well as other weirder operations like (x, y, z) 7→ y ·(x·y).
In particular, quite different-looking presentation/theories (such as Boolean al-
gebras and Boolean rings) can present equivalent categories, and hence have the
same models everywhere; this is sometimes known as Morita equivalence.

The passage from presentation/theories to categories is thus undoubtedly
of great importance. However, my own feeling is that using the word “theory”
for the category rather than its presentation loses too much information that
is traditionally included in things referred to as “theories”. In mathematical
practice, theories (such as “the theory of monoids”) are usually specified by a
small number of generators and relations; thus if nothing else it is important to
understand the process by which these generate a category. Type theory, with
its technology of cut-admissibility, gives us a concrete way to construct and
understand such categories, rather than (for example) simply deducing their
existence by an adjoint functor theorem.

An extended dialogue about the meaning of the word “theory” can be found
at [SL+10].

Exercises

Exercise 1.7.1. Write down a +-presentation for comonoids in categories with
coproducts: objects A equipped with morphisms ∆ : A→ A+A and e : A→ 0
satisfying coassociativity and counitality axioms.

Exercise 1.7.2. Write down a ×-presentation for ring objects. Then extend it to
a (×,+)-presentation for field objects.

Exercise 1.7.3. Write down a unary finite-product theory (that is, a×-presentation)
for objects having two monoid structures with the same unit and satisfy-
ing an internalized version of the “interchange law” m1(m2(x, y),m2(z, w)) =
m2(m1(x, z),m1(y, w)). Prove in the resulting type theory that m1 = m2 and
both are commutative. Compare this proof to Exercise 0.1.4. (In Exercise 2.9.1

78 CHAPTER 1. UNARY TYPE THEORIES

you will re-do this proof using a better internal logic for comparison.)

Exercise 1.7.4. Recall the notion of “distributive near-ring” from Exercise 0.1.5.
Write down a unary finite-product theory for internal distributive near-ring
objects in a category with products. Then use the resulting type theory to prove
that every distributive near-ring object is in fact a ring object; compare this
proof to Exercise 0.1.5. (In Exercise 2.9.1 you will re-do this proof using a better
internal logic for comparison.)

Exercise 1.7.5. Construct a tower of skeletal presentations and adjunctions,
analogous to those constructed in this section, corresponding to the type theory
for fibrations from Exercise 1.4.4.

Collected Exercises

For convenient reference, we collect the exercises from all sections in this chapter.

Exercise 0.1.1. Prove that in a cartesian monoidal category, every object is a
bimonoid in a unique way.

Exercise 0.1.2. Show that the category of cocommutative comonoids in a sym-
metric monoidal category inherits a monoidal structure, and that this monoidal
structure is cartesian.

Exercise 0.1.3. Prove, using arrows and commutative diagrams, that any two
antipodes for a bimonoid (not necessarily commutative or cocommutative) are
equal.

Exercise 0.1.4. Suppose A is a set with two monoid structures (m1, e) and
(m2, e) having the same unit element e, and satisfying the “interchange law”
m1(m2(x, y),m2(z, w)) = m2(m1(x, z),m1(y, w)). Then we have

m1(x, y) = m1(m2(x, e),m2(e, y)) = m2(m1(x, e),m1(e, y)) = m2(x, y)

and also

m1(x, y) = m1(m2(e, x),m2(y, e)) = m2(m1(e, y),m1(x, e)) = m2(y, x)

so that m1 = m2 and both are commutative. This is called the Eckmann-Hilton
argument. State and prove an analogous fact about objects in any category with
finite products having two monoid structures satisfying an “interchange law”.
(In Exercises 1.7.3 and 2.9.1 you will re-do this proof using internal logic for
comparison.)

Exercise 0.1.5. A “distributive near-ring” is like a ring but without the as-
sumption that addition is commutative; thus we have a monoid structure (·, 1)
and a group structure (+, 0) such that · distributes over + on both sides.

(a) Prove that every distributive near-ring is actually a ring. (For this reason,
in an unqualified “near-ring” only one side of distributivity is assumed.)

1.7. PRESENTATIONS AND THEORIES 79

(b) Define a “distributive near-ring object” in a category with finite products.
Try for a little while to prove that any such is actually a “ring object”,
at least until you can see how much work it would be. In Exercises 1.7.4
and 2.9.1 you will prove this using type theory for comparison.

Exercise 0.2.1. Write out the remaining details in the proof that FX is the
free group generated by the set X.

Exercise 1.2.1. Let M be a fixed category; then we have an induced adjunction
between Cat/M and Gr/M . Describe a cut-free type theory for presenting
the free category-over-M on a directed-graph-over-M , and prove the initiality
theorem (the analogue of Theorem 1.2.13). Note that you will have to prove
that cut is admissible first. (Hint: index the judgments by arrows in M , so that
for instance A `α B represents an arrow lying over a given arrow α in M .)

Exercise 1.2.2. Category theorists are accustomed to consider Cat as a 2-
category, but our free category FCatG only has a 1-categorical universal property,
expressed by the 1-categorical adjunction between Cat and Gr. It is not
immediately obvious how it could be otherwise, since unlike Cat, Gr is only a
1-category; but there is something along these lines that we can say.

(a) Suppose G is a directed graph and C a category; define a category Gr(G, C)
whose objects are graph morphisms G → C and whose morphisms are an
appropriate kind of “natural transformation”.

(b) Prove that Gr(G,−) is a 2-functor Cat→ Cat.

(c) Using the cut-free presentation of FCatG, prove that it is a representing
object for this 2-functor.

Exercise 1.2.3. Regarding the cut-free type theory for categories as describing
a multi-sorted algebraic theory, define a particular algebra for this theory that
does not satisfy the cut rule. Then define another algebra that does admit a
“cut rule”, but in which the resulting “composition” is not associative.

Exercise 1.3.1. Using the unary sequent calculus for meet-semilattices, prove
that A ∧ A ∼= A for any object A of any meet-semilattice. (Recall that meet-
semilattices are categories with at most one morphism in each hom-set, so for
two objects to be isomorphic it suffices to have a morphism in each direction.)
Then prove the same thing using the natural deduction.

Exercise 1.3.2. Using either the sequent calculus or the natural deduction for
meet-semilattices (your choice), prove that in any meet-semilattice we have

A ∧ > ∼= A > ∧A ∼= A A ∧B ∼= B ∧A A ∧ (B ∧ C) ∼= (A ∧B) ∧ C

Exercise 1.3.3. Prove that the rules >R and ∧R in the unary sequent calcu-
lus for meet-semilattices are invertible, in the sense that whenever we have a
derivation of their conclusions, we also have a derivation of all their premises.

80 CHAPTER 1. UNARY TYPE THEORIES

Exercise 1.3.4. Describe a sequent calculus for join-semilattices (posets with
a bottom element and binary joins), and prove the admissibility and initiality
theorems for it. The rules for ⊥ and ∨ should be exactly dual to the rules for >
and ∧.

Exercise 1.3.5. By putting together the rules for meet- and join-semilattices,
describe a sequent calculus for lattices (posets with a top and bottom element
and binary meets and joins), and prove the admissibility and initiality theorems
for it.

Exercise 1.3.6. Prove that in your sequent calculus for lattices from Exer-
cise 1.3.5, the rules >R, ∧R, ⊥L, and ∨L are all invertible in the sense of
Exercise 1.3.3.

Exercise 1.3.7. A map of posets P : A →M is called a (cloven) fibration if
whenever b ∈ A and x ≤ P (b), there is a chosen a ∈ A such that P (a) = x and
a ≤ b and moreover for any c ∈ A , c ≤ b and P (c) ≤ x together imply c ≤ a.
The object a can be written as x∗(b).

(a) Given a fixed poset M , describe a sequent calculus for fibrations over
M by adding rules governing the operations x∗ to the cut-free theory of
Exercise 1.2.1.

(b) Prove the initiality theorem for this sequent calculus.

(c) Use this sequent calculus to prove that in any fibration P : A →M , if we
have b ∈ A and x ≤ y ≤ P (b), then x∗(y∗(b)) ∼= x∗(b).

Exercise 1.3.8. Now describe instead a natural deduction for fibrations over
M , prove the initiality theorem, and re-prove that x∗(y∗(b)) ∼= x∗(b) using this
theory.

Exercise 1.3.9. Suppose we augment your sequent calculus for fibrations over
M from Exercise 1.3.7 with the following additional rules for “fiberwise meets”.
Here ` A typex is a judgment indicating that A will be an object of our fibration
in the fiber over x ∈M .

` >x typex

` A typex ` B typex
` A ∧x B typex

` A typex
A `x≤y >y

A `x≤y C ` B typex
A ∧x B `x≤y C

B `x≤y C ` A typex
A ∧x B `x≤y C

A `x≤y B A `x≤y C
A `x≤y B ∧y C

Consider the sequents

x∗(A ∧y B) `x≤x x∗A ∧x x∗B
x∗A ∧x x∗B `x≤x x∗(A ∧y B)

for x ≤ y, ` A typey, and ` B typey.

1.7. PRESENTATIONS AND THEORIES 81

(a) Construct derivations of these sequents in the above sequent calculus.

(b) Write down an analoguous natural deduction and derive the above sequents
therein.

(c) What categorical structure do you think these type theories construct the
initial one of? If you feel energetic, prove the initiality theorem.

Exercise 1.3.10. A map of posets P : A → M is called an opfibration if
P op : A op → M op is a fibration. The analogous operation takes a ∈ A and
P (a) ≤ y to a b ∈ A with P (b) = y and a ≤ b and a universal property; we
write this b as y!(a). We say P is a bifibration if it is both a fibration and an
opfibration. Describe a sequent calculus for bifibrations over a fixed M , and
prove the initiality theorem.

Exercise 1.3.11. Use your sequent calculus from Exercise 1.3.10 to prove that
in a bifibration of posets, if x ≤ y in M , we have an adjunction y! a x∗.
Exercise 1.3.12. Use your sequent calculus from Exercise 1.3.10 to prove that
in a bifibration of posets, if x ∼= y in M , we have an isomorphism x!

∼= x∗ (that
is, for any a in the fiber over y, we have x!(a) ∼= x∗(a)).

Exercise 1.4.1. Suppose we have

f ∈ G(A,B) g ∈ G(A,C) h ∈ G(B,D) k ∈ G(C,E)

Consider the following two derivations of A ` D × E. Note that both use the
admissible cut/substitution rule.

A ` A
A ` B

f
B ` B
B ` D

h

A ` D
cut

A ` A
A ` C

g
C ` C
C ` E

k

A ` E
cut

A ` D×E
×I

A ` A
A ` B

f
A ` A
A ` C

g

A ` B×C
×I

B×C ` B×C
B×C ` B

×E1

B×C ` D
h

B×C ` B×C
B×C ` C

×E2

B×C ` E
k

B×C ` D×E
×I

A ` D×E
cut

Write down the terms corresponding to these two derivations and show directly
that they are related by ≡.

Exercise 1.4.2. Use the type theory for categories with products to prove that
in any category with products we have

A×B ∼= B ×A A× (B ×C) ∼= (A×B)×C A× 1 ∼= A 1×A ∼= A.

82 CHAPTER 1. UNARY TYPE THEORIES

Note that since we are in categories now rather than posets, to show that two
types A and B are isomorphic we must derive x : A `M : B and y : B ` N : A
and also show that their substitutions in both orders are equal (modulo ≡) to
identities.

Exercise 1.4.3. Prove Lemmas 1.4.11 and 1.4.12 (substitution is associative
and respects ≡ in the unary type theory for categories with products).

Exercise 1.4.4. A functor P : A →M is called a fibration if for any b ∈ A
and f : x→ P (b), there exists a morphism φ : a→ b in A such that P (φ) = f
and φ is cartesian, meaning that for any ψ : c→ b and g : P (c)→ x such that
P (ψ) = fg, there exists a unique χ : c → a such that P (χ) = g and φχ = ψ.
The object c is denoted f∗(b).

(a) Generalize your natural deduction for fibrations of posets from Exercise 1.3.8
to a type theory for fibrations of categories over a fixed base category M ,
with β- and η-conversion ≡ rules.

(b) Prove the initiality theorem for this type theory.

(c) Use this type theory to prove that in any fibration P : A →M :

(i) For any f : x→ y in M , f∗ is a functor from the fiber over y to the
fiber over x.

(ii) For any B ∈ A and x
f−→ y

g−→ P (B) in M , we have f∗(g∗(B)) ∼=
(gf)∗(M).

Exercise 1.4.5. Generalize Exercise 1.3.9 from posets to categories, combining
your type theory from Exercise 1.4.4 with the one for categories with products
from §1.4.

Exercise 1.4.6. The category PrCat is a 2-category whose 2-cells are ar-
bitrary natural transformations (that is, there is no nonvacuous notion of a
“product-preserving natural transformation”). Let G be a directed graph; as
in Exercise 1.2.2, define a 2-functor Gr(G,−) : PrCat→ Cat, and show that
FPrCatG is a representing object for it. (Use induction over the derivations of
the judgments in its type-theoretic description.)

Exercise 1.4.7. Exercises 1.2.2 and 1.4.6 address one worry that a category
theorist might have about the strictness of our constructions. Another such
worry is that the morphisms in PrCat preserve specified products strictly, while
it is usually more natural in category theory to preserve products only up to
isomorphism. This is not a problem if our main purpose is to have a syntax to
describe objects and morphisms in particular categories with products; indeed,
it is exactly what we would want. However, for abstract reasons it may be nice
to also be able to say something about less strict functors.

With this in mind, prove that for any G, the category with products FPrCatG
is semi-flexible in the sense of [BKP89]: that is, if M has chosen products,
then every functor FPrCatG →M that preserves products in the usual up-to-
isomorphism sense is naturally isomorphic to a functor that preserves the chosen

1.7. PRESENTATIONS AND THEORIES 83

products strictly. (Again, use induction over derivations in the type-theoretic
description.) Deduce that FPrCatG satisfies a universal property relative to the
2-category of categories with products and functors that preserve them up to
isomorphism.

Exercise 1.4.8. Here is another way to prove the result of Exercise 1.4.7.

(a) Use the initiality of FPrCatG to show that if M has finite products and
Q : M → FPrCatG preserves finite products strictly, then any map of
directed graphs G →M that lifts the inclusion G → FPrCatG extends to a
section FPrCatG →M of Q in PrCat.

(b) The results of [BKP89] imply that the 2-category of categories with products
and functors that preserve products in the usual up-to-isomorphism sense
has 2-categorical limits called products, inserters, and equifiers, and the
projections of these limits preserve products strictly. Use this, and (a), to
prove that FPrCatG satisfies a universal property relative to this 2-category.

Exercise 1.5.1. This is the dual of Exercise 1.4.1, though of course its proof is
not dual. Suppose we have

f ∈ G(A,C) g ∈ G(B,D) h ∈ G(C,E) k ∈ G(D,E)

Here is one (cut-free) derivation of A+B ` E.

A+B ` A+B

A ` A
A ` C

f

A ` E
h

B ` B
B ` D

g

B ` E
k

A+B ` E
+E

Write down another derivation of A+B ` E that ends with the following cut:

...

A+B ` C +D

...

C +D ` E
A+B ` E

cut

Then write down the terms corresponding to the two derivations and show
directly that they are related by ≡.

Exercise 1.5.2. A functor P : A → B is called an opfibration if P op : A op →
M op is a fibration (as in Exercise 1.4.4). The dual of f∗(b) is written f!(a).

(a) Write down a type theory for opfibrations and prove the initiality theorem.
(Remember that we always use natural deduction style when dealing with
categories rather than posets, so you can’t just dualize Exercise 1.4.4 or
categorify Exercise 1.3.10. You will probably want a term syntax such as
“match!”.)

84 CHAPTER 1. UNARY TYPE THEORIES

(b) Use this type theory to prove that f! is always a functor.

Exercise 1.6.1. Suppose we have

f ∈ G(A,C) g ∈ G(A,D) h ∈ G(B,C) k ∈ G(B,D)

Write down two different derivations of A+B ` C ×D in the type theory for
categories with products and coproducts under G, one that ends with ×I and
one that ends with +E. Then write down the corresponding terms and show
directly that they are identified by ≡.

Exercise 1.6.2. A functor P : A → B is called a bifibration if it is both a
fibration and an opfibration.

(a) Combine the theories of Exercises 1.4.4 and 1.5.2 to obtain a type theory
for bifibrations.

(b) If you aren’t tired of proving initiality theorems yet, do it for this type
theory.

(c) Use this type theory to prove that in any bifibration, f! is left adjoint to f∗.

Exercise 1.7.1. Write down a +-presentation for comonoids in categories with
coproducts: objects A equipped with morphisms ∆ : A→ A+A and e : A→ 0
satisfying coassociativity and counitality axioms.

Exercise 1.7.2. Write down a ×-presentation for ring objects. Then extend it
to a (×,+)-presentation for field objects.

Exercise 1.7.3. Write down a unary finite-product theory (that is, a ×-
presentation) for objects having two monoid structures with the same unit and sat-
isfying an internalized version of the “interchange law” m1(m2(x, y),m2(z, w)) =
m2(m1(x, z),m1(y, w)). Prove in the resulting type theory that m1 = m2 and
both are commutative. Compare this proof to Exercise 0.1.4. (In Exercise 2.9.1
you will re-do this proof using a better internal logic for comparison.)

Exercise 1.7.4. Recall the notion of “distributive near-ring” from Exercise 0.1.5.
Write down a unary finite-product theory for internal distributive near-ring
objects in a category with products. Then use the resulting type theory to prove
that every distributive near-ring object is in fact a ring object; compare this
proof to Exercise 0.1.5. (In Exercise 2.9.1 you will re-do this proof using a better
internal logic for comparison.)

Exercise 1.7.5. Construct a tower of skeletal presentations and adjunctions,
analogous to those constructed in this section, corresponding to the type theory
for fibrations from Exercise 1.4.4.

Chapter 2

Simple type theories

At this point we have done about all we can with unary type theories, where
the antecedent and consequent of each sequent consist only of a single type. (In
fact, most introductions to type theory skip over the unary case altogether, but
I find it clarifying to start with cases that are as simple as possible.) The most
common type theories allow finite lists of types as the antecedent. These are the
object of study in this chapter; we call them simple type theories. This term is
more common in the literature than “unary”, but perhaps not with the exact
meaning we are giving it; the word “simple” is primarily used to contrast with
“dependent” type theories (see chapter 6).

2.1 Towards multicategories

As motivation for the generalization away from unary type theories, we consider
a few problems with unary type theory, from a categorical perspective, that
all turn out to have this as their solution. Let’s begin by stating some general
principles of type theory. Looking back at the rules of all our type theories,
we see that they can be divided into two groups. On the one hand, there are
rules that don’t refer specifically to any operation, such as the identity rule
x : X ` x : X and the cut rule. On the other hand, there are rules that introduce
or eliminate a particular operation on types, such as product, coproduct, and so
on — and each such rule refers to only one operation (such as ×,+, f∗, etc.).

This “independence” between the rules for distinct operations is important for
the good behavior of type theory. Many of the exercises have involved combining
the rules for multiple previously-studied operations, and in §1.6 we remarked on
how such operations tend to coexist “without interacting” in the metatheory:
e.g. when proving the cut-admissibility theorems we essentially just commute the
rules for different operations past each other. This “modularity” means that we
are always free to add new structure to a theory without spoiling the structure
we already had. We formulate it as a general principle:

Each rule in a type theory should refer to only one operation. (∗)

85

86 CHAPTER 2. SIMPLE TYPE THEORIES

(Like any general principle, (∗) is not always strictly adhered to. For instance,
we haven’t discussed the ≡ relation that have to be imposed on sequent calculus
derivations to present non-posetal free categories, but these turn out to involve
“commutativity” relations between different type operations. This is arguably
another advantage of natural deduction.)

Note that despite (∗), we can often obtain nontrivial results about the
interaction of operations. For instance, in Exercise 1.3.2 you showed that
A ∧ > ∼= A, even though ∧ and > are distinct operations with apparently
unrelated rules. Similarly, in Exercises 1.3.9 and 1.4.5 you showed that f∗

preserves ∧ and ×. In general, this tends to happen when relating operations
whose universal properties all have the same “handedness”. For instance, all
the operations ∧,>,×,1, f∗ have “mapping in” or “from the right” universal
properties. Thus, we can expect to compare two objects built using more than
one of them by showing that they have the same universal property, and this is
essentially what type theory does.

We also observed in §1.6 that in all cases we were able to extract the rules
for a given operation from the universal property of the objects it was intended
to represent in category theory. The left and right rules in a sequent calculus, or
the introduction and elimination rules in a natural deduction, always expressed
the “two sides” of a universal property: one of them “structures the object” and
the other says that it is universal with this structure. The “principal case” of
cut admissibility for a sequent calculus, and the β-conversion equality rule for a
natural deduction, both express the fact that morphisms defined by the universal
property “compose with the structure” to the inputs, e.g. a map X → A× B
defined from f : X → A and g : X → B gives back f and g when composed
with the product projections. Similarly, the proof of identity admissibility for a
sequent calculus, and the η-conversion rule for a natural deduction, express the
uniqueness half of the universal property. This leads us to formulate another
general principle:

The operations in a type theory should correspond
categorically to objects with universal properties.

(†)

The point is that from the perspective of unary type theory, these two
principles seem overly restrictive. For instance, we remarked above that by
expressing universal properties in type theory we can compare operations whose
universal properties have the same handedness; but often we are interested
in categorical structures satisfying nontrivial relations between objects with
universal properties of different handedness. For instance, in any category with
both products and coproducts, there is a canonical map (A×B) + (A× C)→
A× (B +C), and the category is said to be distributive if this map is always an
isomorphism. (When the category is a poset, we call it a distributive lattice.)
However, we saw in §1.6 that if we simply combine the unary type theoretic
rules for × and +, we get a type theory for categories with products and
coproducts, but no interaction between them. So unary type theory cannot deal
with distributive categories while adhering to (∗) and (†).

Perhaps surprisingly, there is a way to present a type theory for distributive

2.1. TOWARDS MULTICATEGORIES 87

categories. The idea is to move into a world where the product A×B also has
a “mapping out” universal property, so that we can compare (A×B) + (A×C)
and A× (B + C) by saying they have the same universal property. As we will
see, this requires moving to a type theory with multiple antecedents.

This is one motivation. Another is that we might want to talk about
operations whose universal property can’t be expressed in unary type theory
while adhering to (∗). For instance, a cartesian closed category has exponential
objects such that morphisms X → ZY correspond to morphisms X × Y → Z;
but how can we express this without referring to ×? It turns out that the
solution is the same.

We might also want to talk about operations that have no obvious universal
property, obviously violating (†). For instance, what about monoidal categories?
In the usual presentation of a monoidal category, the tensor product A⊗B has
no universal property. It turns out that there is a way to give it a universal
property, and this also leads us to higher-ary antecedents.

So much for motivation. As already mentioned, on the type-theoretic side
what we will do in this chapter is allow multiple types in the antecedent of a
judgment (but still, for now, only one type in the consequent); we call these
simple type theories. In a simple type theory the antecedent is often called the
context.

On the categorical side, what we will study are multicategories of various
sorts. An ordinary multicategory is like a category but whose morphisms can
have any finite list of objects as their domain, say f : (A1, . . . , An)→ B, with
a straightforward composition law. There are many possible variations on this
definition: in a symmetric multicategory the finite lists can be permuted, in a
cartesian multicategory we can add unrelated objects and collapse equal ones, and
so on. All of these categorical structures are known as generalized multicategories.
There is an abstract theory of generalized multicategories [CS10, Her01, Lei04,
Bur71] that includes these examples and many others, but (at least in the current
version of this chapter) we will simply work with concrete examples.

Our approach to the semantics of simple type theory can be summed up in
the following additional principle:

The shape of the context and the structural rules in a simple type theory
should mirror the categorical structure of a generalized multicategory.

(‡)

The structural rules are the rules that don’t refer to any operation on types,
such as identity and cut. (In this chapter we will meet other structural rules,
such as exchange — corresponding to permutation of domains in a symmetric
multicategory – and contraction and weakening — corresponding to diagonals
and projections in a cartesian multicategory.) Principle (†) then tells us that
the non-structural rules (which are sometimes called logical rules) should all
correspond to objects with universal properties in a generalized multicategory,
and principle (∗) tells us that each non-structural rule should involve only one
such object.

In sum, we have the following table of correspondences:

88 CHAPTER 2. SIMPLE TYPE THEORIES

Type theory Category theory
Structural rules Generalized multicategory

Logical rules Independent universal properties

Here by “independent universal properties” I mean that the universal property
of each object can be defined on its own without reference to any other objects
defined by universal properties (unlike, for instance, the exponential in a cartesian
closed category).

We might formulate one further principle based on our experience in chapter 1:

Insofar as possible, structural rules should
be admissible rather than primitive.

(§)

It is not generally possible to make all the structural rules admissible; for
instance, we have seen that for sequent calculus we need a primitive identity
rule at base types, while for natural deduction we need a primitive identity
rule at all types. However, in chapter 1 we were always able to make the
substitution/cut/composition rule admissible rather than primitive. That will
continue to be the case in this chapter, and we will also strive for admissibility
of the new structural rules we introduce (exchange, weakening, and contraction).

Note that together our four principles say that insofar as possible, the “alge-
braic operations” in a categorical structure (such as composition and identities
in a category or multicategory, permutation of domains in a symmetric multicat-
egory, and so on) are exactly what we do not include as primitive rules in type
theory! To put this differently, recall from the end of §1.2.2 that the initiality
theorems for type theory are about showing that two different categories have
the same initial object; we might then say that the effect of the above principles
is to ensure that these two categories are as different as possible. This may seem
strange, but to paraphrase John Baez1, a proof that two things are the same is
more interesting (and more useful) the more different the two things appear to
begin with.

Another way to say it is that in category theory we take the algebraic
structure of a category as primitive, and use them to define and characterize
objects with universal properties; whereas in type theory we take the universal
properties as primitive and deduce that the algebraic structure is admissible. Put
this way, one might say that type theory is even more category-theoretic than
category theory; for what is more category-theoretic than universal properties?

This all been very abstract, so I recommend the reader come back to this
section again at the end of this chapter. However, for completeness let me point
out now that this general correspondence is particularly useful when designing
new type theories and when looking for categorical semantics of existing type
theories. On one hand, any type theory that adheres to (∗) should have semantics
in a kind of generalized multicategory that can be “read off” from the shape of its
contexts and its structural rules. On the other hand, to construct a type theory
for a given categorical structure, we should seek to represent that structure as
a generalized multicategory in which all the relevant objects have independent

1“Every interesting equation is a lie.” [Bae04]

2.2. INTRODUCTION TO MULTICATEGORIES 89

universal properties; then we can “read off” from the domains of morphisms in
those multicategories the shape of the contexts and the structural rules of our
desired type theory.

We will not attempt to make this correspondence precise in any general
way, and in practice it has many tweaks and variations that would probably be
exceptions to any putative general theorem; but it is a useful heuristic.

2.2 Introduction to multicategories

From a categorical point of view, a multicategory can be regarded as an answer
to the question “in what kind of structure does a tensor product have a universal
property?” The classical tensor product of vector spaces (or, more generally,
modules over a commutative ring) does have a universal property: it is the target
of a universal bilinear map. That is, there is a function m : V ×W → V ⊗W
that is bilinear (i.e. m(x,−) and m(−, y) are linear maps for all x ∈ V and
y ∈ W), and any other bilinear map V ×W → U factors uniquely through m
by a linear map V ⊗W → U . Put differently, V ⊗W is a representing object
for the functor Bilin(V,W ;−) : Vect→ Set.

Of course, this property determines the tensor product up to isomorphism
(though of course one still needs some more or less explicit construction to
ensure that such a representing object exists). However, unlike many universal
properties, it is not quite sufficient on its own to show that the tensor product
behaves as desired. In particular, to show that the tensor product is associative,
we would naturally like to show that V ⊗ (W ⊗ U) and (V ⊗W)⊗ U are both
representing objects for the functor of trilinear maps Trilin(V,W,U ;−), and
hence isomorphic. But this is not an abstract consequence of the fact that
each binary tensor product represents bilinear maps; what we need is a sort of
“relative representability” such as Trilin(V,W,U ;−) ∼= Bilin(V ⊗W,U ;−).

Finally, when we come to prove that these associativity isomorphisms satisfy
the pentagon axiom of a monoidal category, we need analogous facts about
quadrilinear maps, at which point it is clear that we should be talking about
n-linear maps for a general n. A multicategory is the categorical context in
which to do this: in addition to ordinary morphisms like an ordinary category
(e.g. linear maps) it also contains n-ary maps for all n ∈ N (e.g. multilinear
maps).

Formally, just as a category is a directed graph with composition and identities,
a multicategory is a multigraph with composition and identities.

Definition 2.2.1. A multigraph G consists of a set G0 of objects, together
with for every object B and every finite list of objects (A1, . . . , An) a set of
arrows G(A1, . . . , An;B).

Note that n can be 0. We say that an arrow in G(A1, . . . , An;B) is n-ary;
the special cases n = 0, 1, 2 are nullary, unary, and binary.

Definition 2.2.2. A multicategory M is a multigraph together with the
following structure and properties.

90 CHAPTER 2. SIMPLE TYPE THEORIES

� For each object A, an identity arrow idA ∈M(A;A).

� For any object C and lists of objects (B1, . . . , Bm) and (Ai1, . . . , Aini
) for

1 ≤ i ≤ m, a composition operation

M(B1, . . . , Bm;C)×
m∏
i=1

M(Ai1, . . . , Aini ;Bi) −→M(A11, . . . , Amnm ;C)

(g, (f1, . . . , fm)) 7→ g ◦ (f1, . . . , fm)

[TODO: Picture]

� For any f ∈ G(A1, . . . , An;B) we have

idB ◦ (f) = f f ◦ (idA1
, . . . , idAn

) = f.

� For any h, gi, fij we have

(h ◦ (g1, . . . , gm)) ◦ (f11, . . . , fmnm) =

h ◦ (g1 ◦ (f11, . . . , f1n1
), . . . , gm ◦ (fm1, . . . , fmnm

))

The objects and unary arrows in a multicategory form a category; indeed, a
multicategory with only unary arrows is exactly a category. Vector spaces and
multilinear maps, as discussed above, are a good example to build intuition.

While the above definition is the most natural one from a certain categorical
perspective, there is another equivalent way to define multicategories. If in the
“multi-composition” g◦(f1, . . . , fm) all the fj ’s for j 6= i are identities, we write it
as g◦ifi. We may also write it as g◦Bi

fi if there is no danger of ambiguity (e.g. if
none of the other Bj ’s are equal to Bi). Thus we have one-place composition
operations

◦i :M(B1, . . . , Bn;C)×M(A1, . . . , Am;Bi)

−→M(B1, . . . , Bi−1, A1, . . . , Am, Bi+1, . . . , Bn;C)

that satisfy the following properties:

� idB ◦1 f = f (since idB is unary, ◦1 is the only possible composition here).

� f ◦i idBi
= f for any i.

� If h is n-ary, g is m-ary, and f is k-ary, then

(h ◦i g) ◦j f =

(h ◦j f) ◦i+k−1 g if j < i

h ◦i (g ◦j−i+1 f) if i ≤ j < i+m

(h ◦j−m+1 f) ◦i g if j ≥ i+m

[TODO: Picture] We refer to the second of these equations as associativity,
and to the first and third as interchange.

2.2. INTRODUCTION TO MULTICATEGORIES 91

Conversely, given one-place composition operations satisfying these axioms, one
may define

g ◦ (f1, . . . , fm) = (· · · ((g ◦m fm) ◦m−1 fm−1) · · · ◦2 f2) ◦1 f1

to recover the original definition of multicategory. The details can be worked
out by the interested reader (Exercise 2.2.1) or looked up in a reference such
as [Lei04].

With multicategories in hand, we can give an abstract version of the charac-
terization of the tensor product of vector spaces using multilinear maps.

Definition 2.2.3. Given objects A1, . . . , An in a multicategory M, a tensor
product of them is an object

⊗
iAi with a morphism χ : (A1, . . . , An)→

⊗
iAi

such that all the maps (− ◦i χ) are bijections

M(B1, . . . , Bk,
⊗

iAi, C1, . . . , Cm;D) ∼−→M(B1, . . . , Bk, A1, . . . , An, C1, . . . , Cm;D).

When n = 2 we write a binary tensor product as A1 ⊗A2. When n = 0 we
call a nullary tensor product a unit object and write it as 1. When n = 1 a
unary tensor product is just an object isomorphic to A.

In keeping with the usual “biased” definition of monoidal category (which
has a binary tensor product and a unit object, with all other tensors built out
of those), we will say that a multicategory is representable if it is equipped
with a chosen unit object and a chosen binary tensor product for every pair of
objects. Let RepMCat denote the category of representable multicategories
and functors that preserve the chosen tensor products strictly.

Theorem 2.2.4. The category RepMCat is equivalent to the category MonCat
of monoidal categories.

Proof. It is easy to show that (A1 ⊗ A2) ⊗ A3 and A1 ⊗ (A2 ⊗ A3), if they

both exist, are both a ternary tensor product
⊗3

i=1Ai, and hence canonically
isomorphic. Similarly, A ⊗ 1 and 1 ⊗ A are unary tensor products, hence
canonically isomorphic to A. The coherence axioms follow similarly; thus any
representable multicategory gives rise to a monoidal category.

Conversely, any monoidal category M has an underlying multicategory de-
fined by M(A1, . . . , An;B) =M(

⊗
iAi;B), where

⊗
iAi denotes some tensor

product of the Ai’s such as (· · · ((A1⊗A2)⊗A3) · · ·)⊗An. The coherence theorem
for monoidal categories implies that the resulting hom-setsM(A1, . . . , An;B) are
independent, up to canonical isomorphism, of the choice of bracketing. We can
similarly use the coherence theorem to define the composition of this multicate-
gory, and to show that the given tensor product and unit make it representable.
Finally, the constructions are clearly inverse up to natural isomorphism.

There are other good references on multicategories, such as [Her00, Lei04].
We end this section by discussing limits and colimits in multicategories, which
are a bit less well-known.

92 CHAPTER 2. SIMPLE TYPE THEORIES

We say that an object 1 of a multicategory is terminal if for any A1, . . . , An
there is a unique morphism (A1, . . . , An)→ 1. Similarly, a binary product of
A and B in a multicategory is an object A×B with projections A×B → A and
A×B → B, composing with which yields bijections

M(C1, . . . , Cn;A×B) −→M(C1, . . . , Cn;A)×M(C1, . . . , Cn;B)

for any C1, . . . , Cn. We will say a multicategory has products if it has a
specified terminal object and a specified binary product for each pair of objects.
The following is entirely straightforward.

Theorem 2.2.5. A monoidal category has products (in the sense of §1.4) if and
only if its underlying multicategory has products, and this yields an equivalence
of categories.

Colimits in a multicategory are a bit more subtle. We define a binary
coproduct in a multicategory M to be an object A+B with injections A→
A+B and B → A+B composing with which induces bijections

M(C1, . . . , Cn, A+B,D1, . . . , Dm;E) ∼−→
M(C1, . . . , Cn, A,D1, . . . , Dm;E)×M(C1, . . . , Cn, B,D1, . . . , Dm;E).

for all C1, . . . , Cn and D1, . . . , DM and E. Similarly, an initial object is
an object 0 such that for any C1, . . . , Cn and D1, . . . , DM and E, there is a
unique morphism (C1, . . . , Cn,0, D1, . . . , Dm) → E. We say a multicategory
has coproducts if it has a specified binary coproduct for each pair of objects
and a specified initial object.

By a distributive monoidal category, we mean a monoidal category thath
has coproducts (in the sense of §1.5) and such that the canonical maps

(A⊗B) + (A⊗ C)→ A⊗ (B + C) (B ⊗A) + (C ⊗A)→ (B + C)⊗A

0→ A⊗ 0 0→ 0⊗A

are isomorphisms. (A distributive category is a distributive cartesian monoidal
category.)

Theorem 2.2.6. A monoidal category is distributive if and only if its underlying
representable multicategory has coproducts, and this yields an equivalence of
categories.

Proof. If M is distributive, then by induction we have(
(
⊗

i Ci)⊗A⊗(
⊗

j Dj)
)

+
(

(
⊗

i Ci)⊗B⊗(
⊗

j Dj)
)
∼= (

⊗
i Ci)⊗(A+B)⊗(

⊗
j Dj)

and similarly

0 ∼= (
⊗

i Ci)⊗ 0⊗ (
⊗

j Dj).

2.3. MULTIPOSETS AND MONOIDAL POSETS 93

Since the morphisms in the underlying multicategory of M are maps out of
iterated tensor products in M, these isomorphisms imply that the latter has
coproducts.

Conversely, if the underlying multicategory ofM has coproducts, then taking
n = m = 0 in their universal property we see that the ordinary category M has
coproducts. Moreover, the universal property with n = 1 and m = 0 applied to
the composites

(C,A)→ C⊗A→ (C⊗A) + (C⊗B) (C,B)→ C⊗B → (C⊗A) + (C⊗B)

gives a map (C,A+B)→ (C ⊗A) + (C ⊗B), and the universal property of ⊗
then yields a map

C ⊗ (A+B)→ (C ⊗A) + (C ⊗B).

It is straightforward to show that this is an inverse to the canonical map that
exists in any monoidal category with coproducts, and similarly in the other
cases; thus M is distributive. Finally, one can check that these constructions
are inverse.

Exercises

Exercise 2.2.1. Prove that the definitions of multicategory in terms of multi-
composition and one-place composition are equivalent, in the strong sense that
they yield isomorphic categories of multicategories.

Exercise 2.2.2. Fill in the details in the proof of Theorem 2.2.4.

Exercise 2.2.3. Show that the category whose objects are representable mul-
ticategories but whose morphisms are arbitrary functors of multicategories is
equivalent to the category of monoidal categories and lax monoidal functors.

Exercise 2.2.4. Show that the category of representable multicategories and
functors that “preserve tensor products”, in the sense that if χ : (A1, . . . , An)→⊗

iAi is a tensor product then F (χ) is also a tensor product, is equivalent to
the category of monoidal categories and strong monoidal functors.

Exercise 2.2.5. Fill in the details in the proof of Theorem 2.2.6.

2.3 Multiposets and monoidal posets

2.3.1 Multiposets

We begin our study of type theory for multicategories with the posetal case.
A multiposet is a multicategory in which each set M(A1, . . . , An;B) has at
most one element. We consider the adjunction between the category MPos
of multiposets and the category RelMGr of relational multigraphs, i.e. sets of
objects equipped with an n-ary relation “(a1, . . . , an−1) ≤ b” for all integers
n ≥ 1. We would like to construct the free multiposet on a relational multigraph
G using a type theory.

94 CHAPTER 2. SIMPLE TYPE THEORIES

Its objects, of course, will be those of G, so we do not yet need a type
judgment. We represent its relations using a judgment written

A1, A2, . . . , An ` B.

As is customary, we use capital Greek letters such as Γ and ∆ to stand for finite
lists (possibly empty) of types; thus the above general judgment can also be
written Γ ` B. We write “Γ1,Γ2, . . . ,Γn” for the concatenation of such lists,
and we also write for instance “Γ, A,∆” to indicate a list containing the type A
somewhere the middle.

At the moment, the only rules for this judgment will be identities and those
coming from G. Based on the lessons we learned from unary type theory, we
represent the latter in Yoneda-style.

A ` A
(A1, . . . , An ≤ B) ∈ G Γ1 ` A1 . . . Γn ` An

Γ1, . . . ,Γn ` B

We call this the cut-free type theory for multiposets under G. Note that
we use the “multi-composition” in Yoneda-ifying the relations in G; this is
absolutely necessary for the admissibility of cut. By contrast, it is traditional to
formulate the cut rule itself in terms of the one-place compositions:

Theorem 2.3.1. In the cut-free type theory for multiposets under G, the follow-
ing cut rule is admissible: if we have derivations of Γ ` A and of ∆, A,Ψ ` B,
then we can construct a derivation of ∆,Γ,Ψ ` B.

Proof. We induct on the derivation of ∆, A,Ψ ` B. If it is the identity rule,
then A = B and ∆ and Ψ are empty, so our given derivation of Γ ` A is all we
need. Otherwise, it comes from some relation A1, . . . , An ≤ B in G, where we
have derivations of Γi ` Ai. Since then ∆, A,Ψ = Γ1, . . . ,Γn, there msut be an
i such that Γi = Γ′i, A,Γ

′′
i , while ∆ = Γ1, . . . ,Γi−1,Γ

′
i and Ψ = Γ′′i ,Γi+1, . . . ,Γn.

Now by the inductive hypothesis, we can construct a derivation of Γ′i,Γ,Γ
′′
i ` Ai.

Applying the rule for A1, . . . , An ≤ B again, with this derivation in place of the
original Γi ` Ai, gives the desired result.

However, we can also prove admissibility of “multi-cut” directly:

Theorem 2.3.2. In the cut-free type theory for multiposets under G, the follow-
ing multi-cut rule is admissible: if we have derivations of Ψi ` Ai for 1 ≤ i ≤ n,
and also A1, . . . , An ` B, then we can construct a derivation of Ψ1, . . . ,Ψn ` B.

Proof. If A1, . . . , An ` B ends with the identity rule, then n = 1 and A1 = B,
whence Ψ1 ` A1 is what we want. Otherwise, it comes from some relation
C1, . . . , Cm ≤ B, where we have a partition A1, . . . , An = Γ1, . . . ,Γm and
derivations of Γj ` Cj . Let Φj be the concatenation of all the Ψi such that
Ai ∈ Γj ; then by the inductive hypothesis we can get Φj ` Cj . Applying the
generator rule again, we get Φ1, . . . ,Φm ` B, which is the desired result.

2.3. MULTIPOSETS AND MONOIDAL POSETS 95

Γ, A,B,∆ ` C
Γ, A⊗B,∆ ` C

⊗L
Γ ` A ∆ ` B

Γ,∆ ` A⊗B
⊗R

Γ,∆ ` A
Γ,1,∆ ` A

1L
` 1

1R

Figure 2.1: Sequent calculus for monoidal posets

The notation is certainly a bit heavier when constructing multi-cuts directly.
However, as we will see later on, in more complicated situations there are definite
advantages to the latter.

Theorem 2.3.3. For any relational multigraph G, the free multiposet it generates
has the same objects, and the relation (A1, . . . , An) ≤ B holds just when the
sequent A1, . . . , An ` B is derivable in the cut-free type theory for multiposets
under G.

Proof. Theorem 2.3.1, together with the identity rule, tells us that this defines a
multiposet FMPosG. If M is any other multiposet with a map P : G → M of
relational multigraphs, then since the objects of FMPosG are those of G, there is
at most one extension of P to FMPosG. It suffices to check that the relations in
FMPosG hold in M; but this is clear since M is a multiposet and the only rules
are an identity and a particular multi-transitivity.

Now we augment the type theory for multiposets with operations representing
a tensor product. Since the tensor product now has a universal property, this is
essentially straightforward. First of all, we need a type judgment ` A type, with
unsurprising rules:

A ∈ G
` A type ` 1 type

` A type ` B type

` A⊗B type

Second, in addition to the rules from §2.3.1, we have rules for ⊗. Once again
we need to make a choice between sequent calculus and natural deduction; we
treat these one at a time.

2.3.2 Sequent calculus for monoidal posets

The additional rules for the sequent calculus for monoidal posets under
G are shown in Figure 2.1. Since A⊗B has a “mapping out” universal property
like a coproduct, the left rule expresses this universal property. The right rule
should be the universal relation A,B ` A ⊗ B, but we have to Yoneda-ify it
using the multicomposition. The rules for 1 are similar.

Note the presence of the additional contexts Γ and ∆ in ⊗L and 1L, which cor-
responds to the strong universal property of a tensor product in a multicategory
referring to n-ary arrows for all n.

Theorem 2.3.4. The general identity rule is admissible in the sequent calculus
for monoidal posets under G: if ` A type is derivable, then so is A ` A.

96 CHAPTER 2. SIMPLE TYPE THEORIES

Proof. By induction on the derivation of ` A type. If A ∈ G, then A ` A is an
axiom. If A = 1, then 1 ` 1 has the following derivation:

` 1
1R

1 ` 1
1L

And if A = B ⊗ C, by the inductive hypothesis we have derivations DB and DC

of B ` B and C ` C, which we can put together like so:

DB

...

B ` B

DC

...

C ` C
B,C ` B ⊗ C

⊗R

B ⊗ C ` B ⊗ C
⊗L

The proof of cut-admissibility in this case has two new features we have not
seen before.

Theorem 2.3.5. Cut is admissible in the sequent calculus for monoidal posets
under G: if we have derivations of Γ ` A and of ∆, A,Ψ ` B, then we can
construct a derivation of ∆,Γ,Ψ ` B.

Proof. If the derivation of ∆, A,Ψ ` B ends with the identity rule or a generating
relation from G, we proceed just as in Theorem 2.3.1. It cannot end with a 1R.
If it ends with a ⊗R, we use the inductive hypotheses on its premises and apply
⊗R again.

The cases when it ends with a left rule introduce one new feature. Suppose
it ends with a 1L. If A is the 1 that was introduced by this rule, then we
proceed basically as before: if Γ ` A is 1R, so that Γ is empty, then we are in the
principal case and we can simply use the given derivation of ∆,Ψ ` B; while if it
is a left rule then we can apply a secondary induction. But it might also happen
that A is a different type, with the introduced 1 appearing in ∆ or Ψ. However,
this case is also easily dealt with by applying the inductive hypothesis to Γ ` A
and the given ∆,Ψ ` B (with A appearing somewhere in its antecedents). In a
direct argument for cut-elimination, we are transforming

...

Γ ` A

...

∆1,∆2, A,Ψ ` B
∆1,1,∆2, A,Ψ ` B

1L

∆1,1,∆2,Γ,Ψ ` B
cut

...

Γ ` A

...

∆1,∆2, A,Ψ ` B
∆1,∆2,Γ,Ψ ` B

cut

∆1,1,∆2,Γ,Ψ ` B
1L

The case when ∆, A,Ψ ` B ends with ⊗L has a similar “commutativity”
possibility. However, in this case there is also something new in the principal case,
where ∆, A1 ⊗ A2,Ψ ` B is derived from ∆, A1, A2,Ψ ` B, while Γ ` A1 ⊗ A2

2.3. MULTIPOSETS AND MONOIDAL POSETS 97

is derived using ⊗R from Γ1 ` A1 and Γ2 ` A2 (so that necessarily Γ = Γ1,Γ2).
We would like to apply the inductive hypothesis twice to transform

...

Γ1 ` A1

...

Γ2 ` A2

Γ1,Γ2 ` A1 ⊗A2

⊗R

...

∆, A1, A2,Ψ ` B
∆, A1 ⊗A2,Ψ ` B

⊗L

∆,Γ1,Γ2,Ψ ` B
cut

(2.3.6)

into

...

Γ2 ` A2

...

Γ1 ` A1

...

∆, A1, A2,Ψ ` B
∆,Γ1, A2,Ψ ` B

cut

∆,Γ1,Γ2,Ψ ` B
cut

(2.3.7)

However, this is a problem for our usual style of induction. We can certainly apply
the inductive hypothesis to Γ1 ` A1 and ∆, A1, A2,Ψ ` B to get a derivation
of ∆,Γ1, A2,Ψ ` B. But this resulting derivation need not be “smaller” than
our given derivation of ∆, A1 ⊗A2,Ψ ` B, so our inductive hypothesis does not
apply to it.

Probably the most common solution to this problem is to formulate the induc-
tion differently. Rather than inducting directly on the derivation of ∆, A,Ψ ` B,
we induct first on the type A (the “cut formula”)), and then do an “inner”
induction on the derivation. All the “commutativity” cases do not change the
cut formula, so there the inner inductive hypothesis continues to apply. But
in the principal case for ⊗, both of the cuts we want to do inductively have
smaller cut formulas than the one we started with (A1 and A2 versus A1 ⊗A2),
so they can be handled by the outer inductive hypothesis regardless of how large
of derivations we need to apply them to.

A different approach, however, is to prove the admissibility of multi-cut
directly:

Theorem 2.3.8. Multi-cut is admissible in the sequent calculus for monoidal
posets under G: if we have derivations of Ψi ` Ai for 1 ≤ i ≤ n, and also
A1, . . . , An ` B, then we can construct a derivation of Ψ1, . . . ,Ψn ` B.

Proof. In this case we can return to inducting directly on the derivation of
A1, . . . , An ` B. The cases of identity and generator rules are just like in
Theorem 2.3.2, and ⊗R is just like the generator case. Unlike in Theorem 2.3.5
it could end with 1R, but in this case n = 0 and there is nothing to be done.

If it ends with 1L, then some Ai = 1, and we can forget about the corre-
sponding Ψi ` Ai and proceed inductively with the rest of them. (Note how
even this case is simpler than in Theorem 2.3.5.)

Finally, if it ends with ⊗L, then some Ai = C ⊗ D, say, and we perform
our secondary induction on Ψi ` Ai. Since Ai = C ⊗D is not a base type, this
derivation cannot end with the identity or generator rules, and of course it cannot

98 CHAPTER 2. SIMPLE TYPE THEORIES

end with 1R. If it ends with a left rule, we inductively cut with the premise of
that rule and then apply it afterwards. The remaining case is when it ends with
⊗R, so that we have derivations of Γ ` C and ∆ ` D with Ψi = Γ,∆. But now
we can inductively cut our given premise A1, . . . , Ai−1, C,D,Ai+1, . . . , An ` B
with these two and also the given Ψj ` Aj for j 6= i.

That is, instead of transforming (2.3.6) into (2.3.7), where we have to feed
the output of one inductive cut into another inductive cut (which is what creates
the problem), we transform

...

Ψj ` Aj

...

Γ ` C

...

Γ ` D
Γ,∆ ` C ⊗D

⊗R

...

A1, . . . , C,D, . . . , An ` B
A1, . . . , C ⊗D, . . . , An ` B

⊗L

Ψ1, . . . ,Γ,∆, . . . ,Ψn ` B
cut

into

...

Ψj ` Aj

...

Γ ` C

...

Γ ` D

...

A1, . . . , C,D, . . . , An ` B
Ψ1, . . . ,Γ,∆, . . . ,Ψn ` B

cut

Thus, the multicategorical perspective leads to a simpler inductive proof of cut
admissibility. (Note, though, that to recover the one-place cut from the multi-cut
requires composing with identities, hence invoking Theorem 2.3.4 as well.)

In any case, we are ready to prove the initiality theorem, relating to an adjunc-
tion between the categoris RelMGr of relational multigraphs and MonPos of
monoidal posets. As always, the morphisms in our categories will be completely
strict: so in particular the morphisms in MonPos are strict monoidal functors.

Theorem 2.3.9. For any relational multigraph G, the free monoidal poset
generated by G is described by the sequent calculus for monoidal posets under
G: its objects are the A such that ` A type is derivable, while the relation
(A1, . . . , An) ≤ B holds just when the sequent A1, . . . , An ` B is derivable.

Proof. As before, Theorems 2.3.4 and 2.3.5 show that this defines a multiposet
FMonPosG. Moreover, the rules for ⊗ and 1 tell us that it is representable, hence
monoidal.

Now suppose P : G → M is a map into the underlying multiposet of any
other monoidal poset. We can extend P uniquely to a function from the objects
of FMonPosG to those of M preserving ⊗ and 1 on objects, so it remains to
check that this is a map of multiposets and preserves the universal properties of
⊗ and 1. However, ⊗R and 1R are preserved by the universal data of ⊗ and 1
in M, while the universal properties of these data mean that ⊗L and 1L are
also preserved.

2.3. MULTIPOSETS AND MONOIDAL POSETS 99

2.3.3 Natural deduction for monoidal posets

In natural deduction, the introduction rules ⊗I and 1I will coincide with the
right rules ⊗R and 1R from the sequent calculus, but now we need elimination
rules. Since ⊗ and 1 in a multicategory have a “mapping out” universal property,
these elimination rules will be reminiscent of the “case analysis” rules from §1.5.
Formally speaking, they can be obtained by simply cutting ⊗L and 1L with
an arbitrary sequent (thereby “building in cuts” to make the cut-admissiblity
theorem easier).

Ψ ` A⊗B
Γ, A,B,∆ ` C

Γ, A⊗B,∆ ` C
⊗L

Γ,Ψ,∆ ` C
cut

Ψ ` 1

Γ,∆ ` A
Γ,1,∆ ` A

1L

Γ,Ψ,∆ ` C
cut

As usual in a natural deduction, we also need to assert the identity rule for all
types. Thus our complete natural deduction for monoidal posets under
G consists of (the rules for ` A type and):

` A type

A ` A
(A1, . . . , An ≤ B) ∈ G Γ1 ` A1 . . . Γn ` An

Γ1, . . . ,Γn ` B

Γ ` A ∆ ` B
Γ,∆ ` A⊗B

⊗I
Ψ ` A⊗B Γ, A,B,∆ ` C

Γ,Ψ,∆ ` C
⊗E

() ` 1
1I

Ψ ` 1 Γ,∆ ` A
Γ,Ψ,∆ ` C

1E

We leave the metatheory of this as an exercise (Exercise 2.3.1); it is also
subsumed by the categorified version discussed in more detail in the next section.

Remark 2.3.10. In §1.3.2 we remarked that in (unary) natural deductions, the
conclusions (bottoms) of rules always have an arbitrary type as antecedent (left
side of `). For simple type theories, the corresponding property is that the
conclusions of rules should have an arbitrary context on the left. This is not
quite true for the above presentation of the rules, since most of their conclusions
have an antecedent obtained by concatenating two or more contexts. However,
such a rule is always equivalent to one whose conclusion involves an arbitrary
context that is decomposed as a concatenation by an additional premise. For
instance, the rule ⊗I could equivalently be formulated as

Ψ = Γ,∆ Γ ` A ∆ ` B
Ψ ` A⊗B

⊗I

while 1I could be written
Γ = ()

Γ ` 1
1I

100 CHAPTER 2. SIMPLE TYPE THEORIES

This is the appropriate point of view when reading rules “bottom-up” for type-
checking or proof search, as discussed at the end of §A.4: to type-check or prove
Ψ ` A⊗B we need to find an appropriate decomposition Ψ = Γ,∆ for which we
can type-check or prove Γ ` A and ∆ ` B. However, because this transformation
is so straightforward, when writing informally one generally uses the simpler
form with concatenated contexts in the conclusion.

Exercises

Exercise 2.3.1. Prove the well-formedness, cut-admissibility, and initiality theo-
rems for the natural deduction for monoidal posets.

Exercise 2.3.2. Prove that the rules ⊗L and 1L in the sequent calculus for
monoidal posets are invertible in the sense of Exercise 1.3.3: whenever we have
a derivation of their conclusions, we also have derivations of their premises.

Exercise 2.3.3. Write down either a sequent calculus or a natural deduction for
monoidal posets that are also meet-semilattices, and prove its initiality theorem.

Exercise 2.3.4. Let us augment the sequent calculus for monoidal posets by the
following versions of the rules for join-semilattices:

` A type ` B type

` A ∨B type ` ⊥ type

Γ ` A
Γ ` A ∨B

Γ ` B
Γ ` A ∨B

Γ, A,∆ ` C Γ, B,∆ ` C
Γ, A ∨B,∆ ` C Γ,⊥,∆ ` C

(a) Construct derivations in this calculus of the following sequents:

(A⊗B) ∨ (A⊗ C) ` A⊗ (B ∨ C)

A⊗ (B ∨ C) ` (A⊗B) ∨ (A⊗ C)

(b) Prove that this sequent calculus constructs the initial distributive monoidal
poset (see Theorem 2.2.6).

2.4 Multicategories and monoidal categories

Now we are ready to move back up from posets to categories; but here we
encounter a bit of an expositional conundrum. We have started with ordinary
(non-symmetric, non-cartesian) multicategories since they are simpler from a
category-theoretic perspective; in §2.6 we will introduce symmetric and cartesian
multicategories by adding extra structure. However, in type theory there are
some ways in which the cartesian case is the simplest. This is essentially because
our intuition tells us that “variables can be used anywhere”, whereas in a non-
cartesian type theory we have to control how many times a variable is used (and,
in the non-symmetric case, what order they are used in). Nevertheless we begin

2.4. MULTICATEGORIES AND MONOIDAL CATEGORIES 101

in this section (and the next) with a type theory for ordinary multicategories,
as it introduces several important ideas that are clearer without the symmetric
and cartesian structure to worry about; but we encourage the reader not to get
too bogged down in details.

2.4.1 Multicategories

Categorically, we begin with the adjunction between the category MCat of
multicategories and the category MGr of multigraphs. Let G be a multigraph;
we augment the cut-free theory of §2.3.1 with terms that represent the structure
of derivations, as we did in §§1.2, 1.4 and 1.5.

Since our antecedents are now lists of formulas, we assign an abstract variable
to each of them, and we assign a single term involving these variables to the
consequent. Of course, we must assign distinct variables to distinct types in the
list (or, more precisely, to distinct occurrences of types, since the same type
might occur more than once, and these occurrences should be assigned distinct
variables).

Thus, for instance, we might have a judgment such as

x : A, y : B, z : C ` f(x, g(y, z)) : E

where f ∈ G(A,D;E) and g ∈ G(B,C;D). Note that as always, the symbol ` is
the “outermost”. Moreover, the comma between abstract variable assignments
binds more loosely than the typing colons; the above judgment should be read as

((x : A), (y : B), (z : C)) ` (f(x, g(y, z)) : E).

As before, the derivation is actually determined by the term associated to the
consequent together with all the free variables in the context, which we can
emphasize by writing

xyz.f(x, g(y, z)) : (A,B,C ` E).

Since we now have multiple formal variables appearing in one sequent, it
becomes important to keep track of which is which. As in unary type theory,
there are two ways to name variables. In de Bruijn style we choose a fixed
countably infinite set of variables, say x1, x2, x3, . . . , and demand that any
sequent with n types in its context use the first n of these variables in order. In
fact there are two choices for this order; we might write

x1 : A1, x2 : A2, . . . , xn : An `M : B or xn : An, . . . , x2 : A2, x1 : A1 `M : B

The first is called using de Bruijn levels and the second de Bruijn indices.
The second way to name variables is to allow arbitrary variables (perhaps

taken from some fixed infinite set of variables), but keep track of α-equivalence.
This now means that we can rename each variable independently, as long as we
rename all of its occurrences at the same time and we don’t try to rename any

102 CHAPTER 2. SIMPLE TYPE THEORIES

two variables to the same thing. For instance, if f ∈ G(A,A;B) then we can
write four sequents

x : A, y : A ` f(x, y) : B x : A, y : A ` f(y, x) : B

y : A, x : A ` f(y, x) : B y : A, x : A ` f(x, y) : B

The two in the left column are the same by α-equivalence, and similarly the two
in the right column are identical; but the columns are distinct from each other.
(In fact, in the type theory of the present section, the sequents in the right-hand
column are impossible; but in the theories to be considered in §§2.8 and 2.10
they will be possible.)

Remark 2.4.1. The intent of α-equivalence is that the names or labels of variables
are themselves meaningless, but they carry the information of which variable
occurrences in a term refer to which variables in the context (or, later, to which
variable binding sites). Bourbaki attempted to do away with variable labels
entirely, writing all variable occurrences as � and drawing connecting links to
denote these references; thus the two columns above would be written

A,A ` f(�,�) : B A,A ` f(�,�) : B

However, this notation seems unlikely to catch on.

In §2.3 we used capital Greek letters such as Γ to denote finite lists of types.
As is also conventional, when we incorporate formal variables we use Γ represent
a finite list of types with variables attached (with, of course, distinct variables
attached to distinct occurrences of types), which is also called a context. In
general, Γ represents “the sort of thing that can go on the left of `”.

Now, the rules for multiposets and monoidal posets from §2.3 involve, among
other things, concatenation of such lists, which we wrote as Γ,∆. But when Γ
and ∆ contain variables, simple concatenation would not preserve the invariant
that distinct occurrences of types are labeled by distinct variables, so something
else must be going on. If we use de Bruijn style, then the variable numbers in
Γ or ∆ have to be incremented; we leave the details of this to the interested
reader (Exercise 2.4.4). If we instead use arbitrary named variables, as we will
generally do, then we simply need to apply α-equivalences to Γ and/or ∆ to
make their variable names disjoint. (This is an instance of Principle 1.4.3 that
term notations for rules can require applying α-equivalences to some premises
for compatibility. In §1.4 “compatibility” meant using the same variable, while
here it means using different variables.)

From now on we will write simply Γ,∆ (and similarly Γ, x : A,∆, and so
on) for the concatenation of two given contexts, modified to ensure variable
distinctness in whatever way is appropriate. Of course, any variable incrementing
or α-equivalence that happens in Γ or ∆ must also be applied to the consequents
of any sequents they appear in. On the other hand, if in some situation we
assume a sequent and write its context as Γ,∆, then no such operation is being

2.4. MULTICATEGORIES AND MONOIDAL CATEGORIES 103

applied; we are simply choosing a partition of that context into two parts. When
applying a rule “top-down”, this applies to its premises, while when applying it
“bottom-up”, this applies to its conclusion (recall Remark 2.3.10).

All this futzing around with variables may seem quite tedious and uninter-
esting. It does matter in some situations; for instance, if mathematics is to be
implemented in a computer, then all these technical issues must be dealt with
carefully. However, from our point of view these are all just different tricks
to ensure that the terms with formal variables (modulo α-equivalence) remain
exact representations of derivation trees. The terms where we have to rename
variables and so on are only a notation for the mathematical objects of real
interest, namely derivations. Remember this if you are ever in doubt about the
meaning of variables or what sorts of renamings are possible.

With all of that out of the way, we can anticlimactically state the rules for
the cut-free type theory for multicategories under G:

A ∈ G
x : A ` x : A

f ∈ G(A1, . . . , An;B) Γ1 `M1 : A1 . . . Γn `Mn : An

Γ1, . . . ,Γn ` f(M1, . . . ,Mn) : B

We note that this theory has the following property.

Lemma 2.4.2. If Γ ` M : B is derivable, then every variable in Γ appears
exactly once in M .

Proof. By induction on the derivation. The identity rule x : A ` x : A clearly has
this property. And in the conclusion of the generator rule each variable appears
in exactly one Γi, hence can only appear in one of the Mi’s, and by induction it
appears exactly once there; hence it appears exactly once in f(M1, . . . ,Mn).

In type-theoretic lingo, Lemma 2.4.2 says that our current type theory is
linear (just like a linear polynomial uses each variable exactly once, a “linear
type theory” uses each variable exactly once). Note that linearity is a property
of a system that we prove, not a requirement that we impose from outside. It is
useful when proving that terms are derivations.

Lemma 2.4.3. If Γ ` N : B is derivable in the cut-free type theory for multi-
categories under G, then it has a unique derivation.

Proof. If N = x, then the derivation can only be id. And if N = f(M1, . . . ,Mn),
then by linearity each variable in Γ must occur in exactly one of the subterms
M1, . . . ,Mn. If Γ ` N : B is derivable, then it must be that this partition of Γ is
ordered, Γ = Γ1, . . . ,Γn, and this (together with the known domain (A1, . . . , An)
of f) determines the premises Γi `Mi : Ai that must be recursively checked (c.f.
Remark 2.3.10)

104 CHAPTER 2. SIMPLE TYPE THEORIES

Linearity also has content as a statement about derivations rather than just
their terms: it says that each occurrence of a type in the antecedent of a derivable
sequent can be “traced back up” exactly one branch of the derivation tree. For
instance, in the following derivation

x : A ` x : A

y : B ` y : B z : A ` z : A

y : B, z : A ` g(y, z) : X

w : C ` w : C

w : C ` h(w) : Y

x : A, y : B, z : A,w : C ` f(x, g(y, z), h(w)) : Z

we can trace the occurrences of types in the antecedent of the conclusion as
follows (omitting the variables and terms for brevity):

A ` A
B ` B A ` A

B,A ` X
C ` C
C ` Y

A,B,A,C ` Z

We now move on to the admissibility of cut/substitution. For this we may
again choose between the one-place cut and the multi-cut. We choose the former,
because the notation is less heavy, and because it matches the more common
path taken in type theory. (The advantage of multi-cut that we saw in §2.3.2
is not relevant for natural deduction, since there are no left rules. We will see
something analogous in §2.7, however.) But we encourage the interested reader
to write down a multi–substitution too (Exercise 2.4.2).

Theorem 2.4.4. Substitution is admissible in the cut-free type theory for multi-
categories under G: given derivations of Γ `M : A and of ∆, x : A,Ψ ` N : B,
we can construct a derivation of ∆,Γ,Ψ `M [N/x] : B.

Proof. This is essentially just Theorem 2.3.1, with terms carried along. There is
one thing to be said: since the variables used in any context must be distinct,
including the given context ∆, x : A,Ψ, it must be that the variables in ∆ and
Ψ are pairwise distinct, and all of them are distinct from x. But the variables in
∆,Ψ may not be pairwise distinct from those in Γ, so the context of the desired
conclusion ∆,Γ,Ψ `M [N/x] : B may involve an α-equivalence. For instance, if
we have y : C ` f(y) : A and y : C, x : A, z : D ` g(y, x, z) : B, we cannot naively
conclude y : C, y : C, z : D ` g(y, f(y), z) : B; we have to rename one of the y’s
first and get y : C,w : C, z : D ` g(y, f(w), z) : B. We emphasize, however, that
this is only a point about the term notation. The proof of Theorem 2.3.1, which
doesn’t mention variables or terms at all, is already an operation on derivations,
and the renaming of variables only arises when we notate those derivations in a
particular way.

As before, note that we can regard this as defining substitution; its inductive
clauses are

x[M/x] = M

f(N1, . . . , Nn)[M/x] = f(N1, . . . , Ni−1, Ni[M/x], Ni+1, . . . , Nn)

2.4. MULTICATEGORIES AND MONOIDAL CATEGORIES 105

where i is the unique index such that x occurs inNi (which exists by Lemma 2.4.2).
The one-place substitution operation defined in Theorem 2.4.4 will, of course,

give the ◦i operations in our free multicategory. The index i is specified implicitly
by the position of the variable x in the context of N . A similar thing happens
with the associativity and interchange axioms.

Theorem 2.4.5. Substitution in the cut-free type theory for multicategories
satisfies the associativity/interchange rules:

(a) If Γ `M : A and ∆, x : A,∆′ ` N : B and Ψ, y : B,Ψ′ ` P : C, then

P [N/y][M/x] = P [N [M/x]/y]

(b) If Γ `M : A and ∆ ` N : B and Ψ, x : A,Ψ′, y : B,Ψ′′ ` P : C, then

P [N/y][M/x] = P [M/x][N/y]

Proof. In both cases we induct on the derivation of P . For (a), if P = y
then both sides are N [M/x]. If P = f(P1, . . . , Pn), suppose y occurs in
Pi. Then P [N/y] = f(P1, . . . , Pi[N/y], . . . , Pn) and x occurs in Pi[N/y], so
P [N/y][M/x] = f(P1, . . . , Pi[N/y][M/x], . . . , Pn) and the inductive hypothesis
applies.

For (b), we can’t have P being a single variable since there are two distinct
variables in its context. Thus it must be f(P1, . . . , Pn), with x and y appearing
in Pi and Pj respectively. If i = j, then we simply apply the inductive hypothesis
to Pi; while if i 6= j then

P [N/y][M/x] = f(P1, . . . , Pi[M/x], . . . , Pj [N/y], . . . , Pn) = P [M/x][N/y]

If we used de Bruijn levels instead of arbitrary named variables, then the
statement of Theorem 2.4.5 would involve the same arithmetic on variable
numbers that appears in the ◦i operations. It is pleasing how the use of abstract
variables eliminates this tedious bookkeeping. (It is also possible to eliminate
the bookkeeping at the multicategorical level by using an alternative definition
of multicategories such as that of [Lei04, Appendix A].)

Theorem 2.4.6. For any multigraph G, the free multicategory generated by
G can be described by the cut-free type theory for multicategories under G: its
objects are those of G, and its morphisms Γ→ B are the derivations of Γ ` B
(or equivalently, the derivable term judgments Γ `M : B modulo α-equivalence).

Proof. Theorem 2.4.4 gives us the one-place composition operations, and The-
orem 2.4.5 verifies the associativity/interchange axiom for these. The two
identity axioms are x[M/x] = M (one of the defining clauses of substitution)
and “M [y/x] = M”, which looks false or nonsensical but is actually just an
instance of α-equivalence.

Thus, we have a multicategory FMCatG. Let M be any multicategory and
P : G → M a map of multigraphs; as usual we extend P to the morphisms
of FMCatG by induction on derivations, and such an extension is forced since
the rules are all instances of functoriality. Finally we verify by induction on
derivations that this extension is in fact functorial on all composites.

106 CHAPTER 2. SIMPLE TYPE THEORIES

2.4.2 Monoidal categories

We now extend the term notation of §2.4.1 to the natural deduction for monoidal
posets from §2.3.3, obtaining a simple type theory for monoidal categories
under G shown in Figure 2.2.

The rule ⊗I, like the rule ×I from §1.4, “pairs up” two derivations of Γ ` A
and ∆ ` B, and thus must include terms notating both. In this case, however,
rather than pulling out the same variable from each, we require that the variables
used are disjoint, so that we can concatenate the contexts in the conclusion. Thus
once again we are pairing up only the term parts (associated to the consequents),
but the variables in the two contexts remain distinct; to emphasize this difference
we use a different notation M,N ¡ instead of 〈M,N〉.

The rule ⊗E, on the other hand, is more like the rule +E from §1.5: it has
to include terms for both premises, one of which involves variables not appearing
in the conclusion. But unlike in §1.5, the term N can contain other variables
that remain in the context of the conclusion (and must be disjoint from those
in M , by α-equivalence if necessary). We only need to “bind” the other two
variables x and y. Thus, for instance, the following application of ⊗I:

u : C, v : D ` f(u), g(v)¡ : A⊗B
z : G, x : A, y : B,w : H ` h(z, x, y, w) : K

z : G, u : C, v : D,w : H ` match⊗(f(u), g(v)¡, xy.h(z, x, y, w)) : K

produces a term in which the variables z, w in h(z, x, y, w) are free, in addition
to the free variables u, v in f(u), g(v)¡.

Intuitively, because the tensor product has a “mapping out” universal property
like a coproduct (that is, it is a “positive type”), its elimination rule is a sort of
“case analysis” that decomposes an element of A⊗B into an element of A and an
element of B, rather than a pair of projections. Just as the rule +E says that “to
do something with an element of A+B, it suffices to assume that it is either inl(u)
or inr(v)”, the rule ⊗E says that “to do something with an element of A⊗B, it
suffices to assume that it is x, y¡.” And just as the variables u and v are “bound”
in the term syntax matchA+B(M,u.P, v.Q) for coproducts, the variables x and

y are bound in the term syntax match
Γ|∆
A⊗B(M,xy.N). The annotations A⊗B

and Γ|∆ are to make type-checking possible (see Lemma 2.4.8); but generally
we will omit them and write simply match⊗(M,xy.N).

The case of 1 is similar but simpler: to do something with an element of 1,
it suffices to assume that it is ?. This gives no extra information, so no new
variables are bound. That is, the term syntax match1(M,N) binds nothing in
N ; it simply allows us to ignore M (while keeping the free variables of M in the
context).

Like the theory of §2.4.1, this theory is linear:

Lemma 2.4.7. If Γ `M : B is derivable in the simple type theory for monoidal
categories under G, then every variable in Γ appears exactly once free in M .

Proof. By induction on the derivation. The cases of variables and generators
are as in Lemma 2.4.2. For a pair M,N ¡ coming from ⊗I, each variable in

2.4. MULTICATEGORIES AND MONOIDAL CATEGORIES 107

` A type

x : A ` x : A

f ∈ G(A1, . . . , An;B) Γ1 `M1 : A1 . . . Γn `Mn : An

Γ1, . . . ,Γn ` f(M1, . . . ,Mn) : B

Γ `M : A ∆ ` N : B

Γ,∆ ` M,N ¡ : A⊗B
⊗I

Ψ `M : A⊗B Γ, x : A, y : B,∆ ` N : C

Γ,Ψ,∆ ` match
Γ|∆
A⊗B(M,xy.N) : C

⊗E

() ` ? : 1
1I

Ψ `M : 1 Γ,∆ ` N : A

Γ,Ψ,∆ ` match1(M,N) : C
1E

Figure 2.2: Simple type theory for monoidal categories

Γ,∆ appears in exactly one of Γ and ∆, hence in exactly one of M and N ;
we then apply the inductive hypotheses to M or N respectively. Similarly, for
match⊗(M,xy.N) coming from ⊗E, each variable in Γ,Ψ,∆ must appear in
exactly one of Γ, Ψ, or ∆; by induction then in the first and third cases it must
appear exactly once in N , and in the second case it must appear exactly once in
M . The case of 1E is similar, while there are no variables at all in ?.

Lemma 2.4.8. If Γ ` N : B is derivable in the simple type theory for monoidal
categories under G, then it has a unique derivation.

Proof. The cases of id and f are as in Lemma 2.4.3, and the case of ⊗I is
similar, while 1I is trivial. For match1(M,N), by linearity each variable occurs
in exactly one of M or N . If such a term is derivable, then the variables occurring
in M must be contiguous in the context, thereby splitting it as Γ,Ψ,∆ and
determining the premises. If it should happen that no variables occur in M
(such as if M = ?), then of course Ψ = (), but the splitting Γ,∆ is not uniquely
determined; however since the premise has a re-joined context Γ,∆ anyway this
doesn’t matter.

In the case of ⊗E, however, this latter point makes a difference, because the
premise does depend on which variables end up in Γ and which in ∆. This is why

we have included the Γ|∆ annotation on match
Γ|∆
⊗ (M,xy.N), so that the context

splitting is determined even if M contains no variables. (See Exercise 2.4.3.)

Lemma 2.4.9. Substitution is admissible in the simple type theory for monoidal
categories under G, in the same sense as Theorem 2.4.4. Moreover, it is associa-
tive and interchanging in the same sense as Theorem 2.4.5.

108 CHAPTER 2. SIMPLE TYPE THEORIES

x[M/x] = M

f(N1, . . . , Nn)[M/x] = f(N1, . . . , Ni[M/x], . . . , Nn) if x occurs in Ni

 P,Q¡[M/x] = P [M/x], Q¡ if x occurs in P

 P,Q¡[M/x] = P,Q[M/x]¡ if x occurs in Q

match⊗(N, uv.P)[M/x] = match⊗(N [M/x], uv.P) if x occurs in N

match⊗(N, uv.P)[M/x] = match⊗(N, uv.P [M/x]) if x occurs in P

?[M/x] cannot happen

match1(N,P)[M/x] = match1(N [M/x], P) if x occurs in N

match1(N,P)[M/x] = match1(N,P [M/x]) if x occurs in P

Figure 2.3: Substitution in the simple type theory for monoidal categories

Proof. The method is the same as that of Theorem 2.3.1. Given judgments
Γ `M : A and ∆, x : A,Ψ ` N : B (involving disjoint variables), we induct on
the derivation of N . If the derivation is id, then ∆ and Ψ are empty and N = x,
in which case we can just use M itself. In all other cases, by Lemma 2.4.7 the
variable x must appear in exactly one of the premises of the last rule applied to
derive N (which is to say, in exactly one of the subterms appearing in N itself),
and we inductively perform the substitution there.

Explicitly, the defining clauses of the substitution operation are shown in
Figure 2.3. (Technically we also ought to indicate how the Γ|∆ superscripts on
match⊗ are frobnicated, but we leave that to the fastidious reader.) The proof of
associativity and interchange is essentially the same as before: all the other rules
behave just like the generator rules, except for ? where the claim is trivial.

There is one final point to be made here about α-equivalence: in the rule
match⊗(N, uv.P)[M/x] = match⊗(N, uv.P [M/x]), we must rename variables to
ensure that u and v do not appear free in M . Otherwise, such a u or v in M
would after substitution be “in the scope” of the binding of u or v, whereas
all the free variables of M ought to remain free in the substituted term. (This
issue didn’t arise in §1.5 because there it was not possible to substitute into the
subterms u.P and v.Q of a match+ term containing bound variables, since they
could not contain any other variables to be substituted for.) When we regard
substitution as an operation on derivations, the point is that to eliminate a cut
after ⊗E of the following sort:

Γ `M : A

Ξ ` N : C ⊗D ∆1, x : A,∆2, u : C, v : D,Ψ ` P : B

∆1, x : A,∆2,Ξ,Ψ ` match⊗(N, uv.P) : B
⊗E

∆1,Γ,∆2,Ξ,Ψ ` match⊗(N, uv.P [M/x]) : B
cut

2.4. MULTICATEGORIES AND MONOIDAL CATEGORIES 109

we have to inductively cut

Γ `M : A ∆1, x : A,∆2, u : C, v : D,Ψ ` P : B

∆1,Γ,∆2, u : C, v : D,Ψ ` P [M/x] : B
cut

and in order for this cut to satisfy the variable condition explained in Theo-
rem 2.4.4, it must be that u and v do not occur in Γ.

When one takes terms with named variables as primary, this sort of “capture-
avoiding substitution” is both necessary and tedious. The de Bruijn methods
avoid it, though at a fairly severe cost to readability. But with substitution
treated as an operation on derivations, there are no variables to “capture” and
nothing to worry about.

With substitution in hand, we can state the β- and η-conversion rules that
implement the universal properties.

match⊗(M,N ¡, xy.P) ≡ P [M/x,N/y]

match⊗(M,xy.N [x, y¡/u]) ≡ N [M/u]

match1(?,N) ≡ N match1(M,N [?/u]) ≡ N [M/u]

As before, the β-conversion rule says that the map out of A ⊗ B defined by
its universal property has the correct composite with the universal morphism
(A,B) → A ⊗ B, while the η-conversion rule says that any map out of A ⊗ B
is determined by the universal property from its composite with the universal
morphism. The rules for 1 are similar.

Theorem 2.4.10. The free monoidal category generated by a multigraph G (or,
more precisely, its underlying multicategory) can be described by the simple type
theory for monoidal categories under G: its objects are the A such that ` A type,
and its morphisms are the derivations of Γ ` A (or the derivable judgments
Γ `M : A) modulo the congruence ≡.

Proof. Lemma 2.4.9 shows that we obtain a multicategory FMonCatG this way,
just as in Theorem 2.4.6. The rules for ⊗ and 1, together with the β- and η-rules
for ≡, tell us that it is representable, and hence a monoidal category. Now if
M is a monoidal category and P : G → M a map of multigraphs, we extend
it to FMonCatG by induction on derivations (of objects and morphisms and
equalities) using the fact that M is a representable multicategory, observe that
this definition is forced by functoriality and (strict) preservation of the monoidal
structure, and then prove by induction that it is indeed a functor.

Note that as in Theorem 1.5.3, we have to be careful to do the induction in
the right order. Since the rules for equalities refer to substitution, we have to
first define the functor on types and terms, then prove that it maps substitution
to composition, then define it on equalities. This will be the case for almost
all type theories we consider from now on (the case of products in §1.4 is very
special in that its equality rules don’t need to refer to substitution), so for the
most part we will no longer bother to mention it.

110 CHAPTER 2. SIMPLE TYPE THEORIES

Exercises

Exercise 2.4.1. Our proof of Theorem 2.4.10 relied on the fact that monoidal
categories are equivalent to representable multicategories, which we sketched
but did not prove carefully. If we don’t assume this fact, then our proof of
Theorem 2.4.10 is actually just about free representable multicategories. Using
this version of the theorem, prove using type theory that any representable
multicategory is monoidal: that is, its tensor product is coherently associative
and unital.

Exercise 2.4.2. Formulate and prove the admissibility of a “multi-substitution”
rule like Theorem 2.3.2 for the type theories considered in this section.

Exercise 2.4.3. The annotation Γ|∆ on match
Γ|∆
A⊗B is something that appears only

in the non-symmetric case, so we encourage the reader not to worry overmuch
about it. However, for the reader who nevertheless insists on worrying, here is
some extra reassurance.

(a) We noted in Lemma 2.4.8 that this annotation on match
Γ|∆
A⊗B(M,xy.N)

is only necessary if M contains no variables. To see that it can actually
matter in that case, find an example of two distinct derivations whose
corresponding terms differ only in their annotations Γ|∆.

(b) Prove that any two terms as in (a) are related by ≡.

Exercise 2.4.4. Describe precisely what has to happen to de-Bruijn-style variables
when concatenating contexts, and formulate the rules for the type theories of
this section using de Bruijn variables.

2.5 Adding products and coproducts

Now that we understand the simple type theories of multicategories and monoidal
categories, let’s add products and coproducts as well. This is where we start
to see the value of principle (∗) from §2.1: for the most part we can just “put
together” the rules from §§1.4, 1.5 and 2.4, although there is a little extra work
to generalize the rules for products and coproducts to the non-unary case.

In Exercises 2.3.3 and 2.3.4 you studied sequent calculi for monoidal posets
with meets and distributive monoidal posets. Now we formulate similar rules
in natural deduction style, annotated with terms; the entire simple type
theory for distributive monoidal categories with products (except for
the obvious rules governing the judgment ` A type) is shown in Figure 2.4.
(To obtain theories for monoidal categories with products only, or distributive
monoidal categories, or multicategories with products and coproducts, and so
on, we can simply omit some of these rules and their corresponding clauses in
the following proofs.)

A few things are worth remarking on. Firstly, the types ⊗,1,+,0 are
“positive” (have “mapping out” universal properties), while the types ×,1 are
“negative” (have “mapping in” universal properties). All the positive types have

2.5. ADDING PRODUCTS AND COPRODUCTS 111

` A type

x : A ` x : A
id

f ∈ G(A1, . . . , An;B) Γ1 `M1 : A1 . . . Γn `Mn : An

Γ1, . . . ,Γn ` f(M1, . . . ,Mn) : B
fI

Γ `M : A ∆ ` N : B

Γ,∆ ` M,N ¡ : A⊗B
⊗I

Ψ `M : A⊗B Γ, x : A, y : B,∆ ` N : C

Γ,Ψ,∆ ` match
Γ|∆
A⊗B(M,xy.N) : C

⊗E

() ` ? : 1
1I

Ψ `M : 1 Γ,∆ ` N : C

Γ,Ψ,∆ ` match1(M,N) : C
1E

Γ `M : A Γ ` N : B

Γ ` 〈M,N〉 : A×B
×I

Γ `M : A×B
Γ ` πA,B1 (M) : A

×E1

Γ `M : A×B
Γ ` πA,B2 (M) : B

×E2

x1 : A1, . . . , xn : An ` ∗(x1, . . . , xn) : 1
1I

Ψ `M : 0

Γ,Ψ,∆ ` matchΓ,∆
0 (M) : C

0E

Γ `M : A

Γ ` inl(M) : A+B
+I1

Γ ` N : B

Γ ` inr(N) : A+B
+I2

Ψ `M : A+B Γ, u : A,∆ ` P : C Γ, v : B,∆ ` Q : C

Γ,Ψ,∆ ` match
Γ|∆
A+B(M,u.P, v.Q) : C

+E

Figure 2.4: Distributive monoidal categories with products

112 CHAPTER 2. SIMPLE TYPE THEORIES

elimination rules involving a match that binds variables (perhaps zero of them),
while the negative types do not. This is a general feature of the behavior of
positive and negative types with respect to abstract variables.

Secondly, as in Exercise 2.3.4, the elimination rules for 0 and A+B act on a
single type in the context, leaving the others untouched. This corresponds to
the definition of coproducts in a multicategory from Theorem 2.2.6.

Thirdly, notice the difference between 1I and 1I: both have no premises,
but in 1I the context of the conclusion must be empty, whereas in 1I it can be
arbitrary. Similarly, the difference between ⊗I and ×I is that in ⊗I the contexts
are concatenated in the conclusion, while in ×I both premises must have the
same context, which is repeated in the conclusion.

Finally, there are some curious annotations. As in §2.4.2, the superscripts
Γ|∆ on match⊗ and match+ are to ensure type-checking, and can usually be
omitted; and similarly for the superscript AB on πi as in §1.4. The superscript
Γ,∆ on match0, however, is there for a different purpose, which is the same
purpose as the passing of all the variables in the context as arguments to ∗; it
has to do with linearity.

Unlike the theory of §2.4, this type theory is not globally “linear”: for instance
in x : A ` 〈x, x〉 : A × A the variable x appears twice. But by including the
unused variables in 1I and 0E we can ensure the following weaker property.

Lemma 2.5.1. In any derivable sequent Γ `M : A, every variable in Γ appears
at least once (free) in the term M .

Proof. An easy induction over derivations.

This “superlinearity” property guarantees that terms are derivations.

Lemma 2.5.2. A derivable sequent Γ `M : A uniquely determines a derivation.

Proof. By induction as usual. The cases involving f , ⊗, and 1 are essentially
just like in Lemma 2.4.8; Lemma 2.5.1 ensures that each variable appears at least
once in the term, and if the term is derivable then each variable must appear
in only one subterm, determining the context splitting. The cases involving
×,1,+,0 are straightforward.

A concrete example where we need the extra arguments to ∗ is:

x : A ` ∗(x) : 1 · ` ∗() : 1

x : A ` ∗(x), ∗()¡ : 1⊗ 1

() ` ∗() : 1 x : A ` ∗(x) : 1

x : A ` ∗(), ∗(x)¡ : 1⊗ 1 (2.5.3)

Unlike with the annotations Γ|∆ on matches (see Exercise 2.4.3), these terms
really can represent distinct morphisms (see Exercise 2.5.1).

Theorem 2.5.4. Substitution is admissible in the simple type theory for dis-
tributive monoidal categories with products: given derivations of Γ `M : A and
∆, x : A,Ψ ` N : B, we can construct a derivation of ∆,Γ,Ψ ` M [N/x] : B.
Moreover, it is associative and interchanging.

2.5. ADDING PRODUCTS AND COPRODUCTS 113

x[M/x] = M

f(N1, . . . , Nn)[M/x] = f(N1, . . . , Ni[M/x], . . . , Nn) if x occurs in Ni

 P,Q¡[M/x] = P [M/x], Q¡ if x occurs in P

 P,Q¡[M/x] = P,Q[M/x]¡ if x occurs in Q

match⊗(N, uv.P)[M/x] = match⊗(N [M/x], uv.P) if x occurs in N

match⊗(N, uv.P)[M/x] = match⊗(N, uv.P [M/x]) if x occurs in P

?[M/x] cannot happen

match1(N,P)[M/x] = match1(N [M/x], P) if x occurs in N

match1(N,P)[M/x] = match1(N,P [M/x]) if x occurs in P

∗(~y, x, ~z)[M/x] = ∗(~y, ~w, ~z) ~w the free variables of M

(π1(N))[M/x] = π1(N [M/x])

(π2(N))[M/x] = π2(N [M/x])

〈P,Q〉[M/x] = 〈P [M/x], Q[M/x]〉
match0(N)[M/x] = match0(N [M/x]) if x occurs in N

match0(N)[M/x] = match0(N) if x not in N

inl(N)[M/x] = inl(N [M/x])

inr(N)[M/x] = inr(N [M/x])

match+(N, u.P, v.Q)[M/x] = match+(N [M/x], u.P, v.Q) if x occurs in N

match+(N, u.P, v.Q)[M/x] = match+(N, u.P [M/x], v.Q[M/x]) if x occurs in P,Q

Figure 2.5: Substitution for distributive monoidal categories with products

Proof. The defining equations are shown in Figure 2.5. They basically aug-
ment the rules from Figure 2.3 with versions of the rules from Theorem 1.4.10
and Lemma 1.5.1. Note the difference between the cases for P,Q¡ and 〈P,Q〉:
in the first we recurse into only one of the subterms, while in the second we
recurse into both. Also there are a couple of new rules for match0 and match+

to deal with the fact that a free variable might occur in one of the case branches
rather than the discriminee.

The β- and η-conversion rules are likewise obtained by combining those of
§§1.4, 1.5 and 2.4; they are shown in Figure 2.6.

Theorem 2.5.5. The free distributive monoidal category with products generated
by a multigraph G is presented by this theory in the usual way: its morphisms
are the derivations of Γ `M (or the derivable terms Γ `M : A) modulo ≡.

Proof. As usual, Theorem 2.5.4 gives us a multicategory, and the rules for
the operations ⊗,1,×, ∗,+,0 make it representable and give it products and
coproducts. Initiality then follows by the usual induction over derivations.

114 CHAPTER 2. SIMPLE TYPE THEORIES

match⊗(M,N ¡, xy.P) ≡ P [M/x,N/y]

match⊗(M,xy.N [x, y¡/u]) ≡ N [M/u]

match1(?,N) ≡ N match1(M,N [?/u]) ≡ N [M/u]

π1(〈M,N〉) ≡M π2(〈M,N〉) ≡ N

〈π1(M), π2(M)〉 ≡M ∗(x1, . . . , xn) ≡M

match+(inl(M), u.P, v.Q) ≡ P [M/u] match+(inr(M), u.P, v.Q) ≡ P [M/v]

match+(M,u.P [inl(u)/y], v.P [inr(v)/y]) ≡ P [M/y] match0(M) ≡ P [M/y]

Figure 2.6: Equality rules for distributive monoidal categories with products

There are two important things to note here. Firstly, while there are a lot
of rules in this type theory, each of them is essentially something we already
understood from a previous section, and we were able to put them together
essentially independently without worrying about how they interact. This is a
good example of the “modularity” of type theory, and the value of principle (∗)
from §2.1.

Secondly, even though the rules for ⊗ and + are completely independent,
we nevertheless obtained a nontrivial interaction between them (distributivity),
because of the structure of the context and how it mirrors the categorical notion of
multicategory. This suggests that we could obtain further properties and relation-
ships between type operations by modifying the judgmental/context structure.
The categorical side of this involves moving to generalized multicategories.

Exercises

Exercise 2.5.1. Find an example of a distributive monoidal category with products
in which the two terms in (2.5.3) represent distinct morphisms.

2.6 Some generalized multicategories

We want to consider monoidal categories with “something extra”, such as
symmetric monoidal categories or cartesian monoidal categories. To describe a
type theory for monoidal categories of this sort, principle (‡) from §2.1 suggests
that we should ask what additional structure this “something extra” induces on
their underlying multicategories. Because the morphisms (A1, . . . , An)→ B in
the underlying multicategory of a monoidal category C are, by definition, the
morphisms A1⊗· · ·⊗An → B in C, the answer to this question depends on what
morphisms between tensor products exist “generically” in monoidal categories

2.6. SOME GENERALIZED MULTICATEGORIES 115

of our desired sort. Here are some examples.

(a) If C is a symmetric monoidal category, we have symmetry isomorphisms
A1 ⊗ · · · ⊗ An ∼−→ Aσ1 ⊗ · · · ⊗ Aσn for any permutation σ ∈ Sn. Thus,
by precomposing with these isomorphisms, we obtain functions between
multicategorical hom-sets

σ∗ : C(Aσ1, . . . , Aσn;B)→ C(A1, . . . , An;B) (2.6.1)

that satisfy appropriate axioms.

(b) If C is a cartesian monoidal category, we have symmetries but also diagonals
such as A → A × A and projections such as A × B → B. In general, for
any function σ : {1, . . . ,m} → {1, . . . , n} we have a morphism

A1 × · · · ×An −→ Aσ1 × · · · ×Aσm

whose component A1 × · · · × An → Aσk is the projection onto the (σk)th

factor. Precomposition with these morphisms yields analogous functions

σ∗ : C(Aσ1, . . . , Aσm;B)→ C(A1, . . . , An;B). (2.6.2)

(c) Less well-known than symmetric and cartesian monoidal categories are
semicartesian monoidal categories, whose unit object is the terminal object,
but whose tensor product is not necessarily the cartesian product. (An
example familiar to higher category theorists is the category 2Cat with its
Gray tensor product.) We will always assume that semicartesian monoidal
categories are additionally symmetric. The semicartesianness gives us
projections but not diagonals, leading to functions (2.6.2) whenever σ is
injective.

(d) Even less well-known are relevance monoidal categories, which are symmetric
and equipped with a coherent system of diagonals A→ A⊗A but whose
unit object is not in general terminal. A familiar example is the category
of pointed sets with its smash product [DP07]. In this case we have
functions (2.6.2) only when σ is surjective.

All of these cases can be encompassed by the following definitions.

Definition 2.6.3. Let N be the full subcategory of Set whose objects are
the sets {1, . . . , n} for all integers n ≥ 0. We regard it as a cocartesian strict
monoidal category, under the disjoint union operation {1, . . . , n} t {1, . . . ,m} =
{1, . . . , n + m}. Moreover, for any σ : {1, . . . ,m} → {1, . . . , n} and k1, . . . , kn,
let σ o (k1, . . . , kn) denote the composite function

{1, . . . ,
∑m
i=1 kσi}

∼−→
⊔m
i=1{1, . . . , kσi}

σ̂−→
⊔n
j=1{1, . . . , kj}

∼−→ {1, . . . ,
∑n
j=1 kj}

where σ̂ acts as the identity from the ith summand to the (σi)th summand. A
faithful cartesian club is a subcategory S ⊆ N such that

116 CHAPTER 2. SIMPLE TYPE THEORIES

(a) S contains all the objects of N.

(b) S is closed under the cocartesian monoidal structure, i.e. if σ and τ are
morphisms of S then so is σ t τ .

(c) S is closed under o, i.e. whenever it contains σ it also contains σ o(k1, . . . , kn).

The above examples are the cases when S consists of the bijections, all the
functions, the injections, or the surjections respectively. There is also the trivial
case when S contains only the identities.

Definition 2.6.4. Let S be a faithful cartesian club. An S-multicategory is
a multicategory M together with operations

M(Aσ1, . . . , Aσm;B)→M(A1, . . . , An;B)

f 7→ fσ∗

for all functions σ : {1, . . . ,m} → {1, . . . , n} in S, satisfying the following
axioms:

(a) fσ∗τ∗ = f(τσ)∗

(b) f(idn)∗ = f

(c) g ◦ (f1σ
∗
1 , . . . , fnσ

∗
n) = (g ◦ (f1, . . . , fn))(σ1 t · · · t σn)∗

(d) gσ∗ ◦ (f1, . . . , fn) = (g ◦ (fσ1, . . . , fσm))(σ o (k1, . . . , kn))∗ where ki is the
arity of fi.

If each hom-set M(A1, . . . , An;B) has at most one element, we call M an
S-multiposet. An S-multigraph is a multigraph equipped with similar oper-
ations satisfying (a) and (b).

As special cases we have, by definition:

When S = S-multicategories are called
bijections symmetric multicategories

all functions cartesian multicategories
injections semicartesian (symmetric) multicategories
surjections relevance multicategories

only identities (ordinary) multicategories

Now, recall the definition of tensor products in a multicategory from Def-
inition 2.2.3, and the result of Theorem 2.2.4 that having all tensor products
(being “representable”) is equivalent to being a monoidal category. For a general
faithful cartesian club S, we might as well define an S-monoidal category
to be an S-multicategory that is representable. However, in many cases this is
equivalent to a more familiar notion.

2.6. SOME GENERALIZED MULTICATEGORIES 117

Theorem 2.6.5. If S includes all bijections, then the monoidal category obtained
from any representable S-multicategory is symmetric. Moreover, the equiva-
lence of Theorem 2.2.4 induces an equivalence between representable symmetric
multicategories and symmetric monoidal categories.

Proof. If χ : (A,B)→ A⊗B is a tensor product, then by acting on it with the
transposition σ : {1, 2} ∼−→ {1, 2} we obtain a morphism χσ∗ : (B,A)→ A⊗B.
Applying the universal property of the tensor product (B,A)→ B ⊗A, we get
a map B ⊗ A→ A⊗ B. We can similarly use the universal property to check
the symmetry axioms.

Conversely, the coherence theorem for symmetric monoidal categories yields
isomorphisms (2.6.1), composing with which gives its underlying multicategory
a symmetric structure. It is straightforward to verify that these constructions
are inverses up to isomorphism.

Recall from §2.2 the definition of products in a multicategory.

Theorem 2.6.6. If S includes all injections, then an object 1 is terminal if
and only if it is a unit object (i.e. there is a universal tensor product morphism
() → 1). Moreover, the equivalence of Theorem 2.2.4 induces an equivalence
between representable semicartesian multicategories and semicartesian monoidal
categories.

Proof. If S includes injections, then for any A1, . . . , An the injection ∅ →
{1, . . . , n} induces a map

M(;B)→M(A1, . . . , An;B).

Thus, if 1 is a unit object with universal morphism χ : () → 1, then this
gives us induced maps eA1,...,An : (A1, . . . , An) → 1. Moreover, the fourth
“equivariance” axiom of an S-multicategory implies that these maps are natural,
in the sense that eA1,...,An

◦ (f1, . . . , fn) = eB1,...,Bm
for any f1, . . . , fn. In

particular, e1 ◦ χ = e() = χ; so by the universal property of χ, we have e1 = id1.
A standard argument (generalized from categories to multicategories) now implies
that 1 is terminal.

Conversely, suppose 1 is terminal. Then in particular, we have a unique
morphism χ : ()→ 1, and acting on χ by the injection ∅ → {1, . . . , n} can only
yield the unique morphism (A1, . . . , An)→ 1. Now we have to show that

(−◦n+1χ) :M(A1, . . . , An,1, B1, . . . , Bm;C)→M(A1, . . . , An, B1, . . . , Bm;C)

is a bijection. But we have a map in the other direction given by acting with
an appropriate injection, and the equivariance properties imply that this is an
inverse.

Lastly, if we have a semicartesian monoidal category, then for any injection
σ we have a map

A1 ⊗ · · · ⊗An −→ Aσ1 ⊗ · · · ⊗Aσm

118 CHAPTER 2. SIMPLE TYPE THEORIES

defined by mapping each Aj not in the image of σ to the terminal object 1,
then removing those copies of 1 from the tensor product since they are also
the tensor unit (and finally permuting if necessary). It is straightforward to
verify that these actions give a semicartesian multicategory, and that that these
constructions are inverses up to isomorphism.

Theorem 2.6.7. If S consists of all functions (i.e. we are in a cartesian mul-
ticategory), then products A × B are in bijective correspondence with tensor
products A⊗B. Moreover, the equivalence of Theorem 2.2.4 induces an equiv-
alence between representable cartesian multicategories and cartesian monoidal
categories (i.e. categories with finite products).

Proof. By acting with injections, for any A,B we obtain morphisms (A,B)→ A
and (A,B) → B. Thus, if A × B is a product, we have an induced map χ :
(A,B)→ A×B. Now if we have any morphism (C1, . . . , Cn, A,B,D1, . . . , Dm)→
E, we can compose with the two projections of the product to get a morphism
(C1, . . . , Cn, A × B,A × B,D1, . . . , Dm) → E, and then act by a surjection to
get (C1, . . . , Cn, A × B,D1, . . . , Dm) → E. The equivariance properties of a
cartesian multicategory, and the universal property of the product, imply that
this operation is inverse to composing with χ, so that the latter is a tensor
product.

Conversely, if χ : (A,B) → A ⊗ B is a tensor product, by applying its
universal property to the above morphisms (A,B) → A and (A,B) → B we
obtain projections A⊗B → A and A⊗B → B. Now given f : (C1, . . . , Cn)→ A
and g : (C1, . . . , Cn)→ B, we have χ◦ (f, g) : (C1, . . . , Cn, C1, . . . , Cn)→ A⊗B,
and by acting with a suitable surjection we get (C1, . . . , Cn)→ A⊗B. Again,
the equivariance properties and the universal property of the tensor product
imply that this is a unique factorization of f and g through the projections.

Note although the first conclusion of Theorem 2.6.7 refers only to binary
products, it still requires the presence of injections in S in addition to surjections.
Indeed, the monoidal category of pointed sets with its smash product has
an underlying multicategory that is relevance (i.e. admits an action by all
surjections), but the smash product is different from the cartesian product. It is
also possible to characterize the S-monoidal categories when S is the injections,
but we leave this to the interested reader; see Exercise 2.6.6.

Remark 2.6.8. Theorems 2.6.6 and 2.6.7 identify an object having a “mapping
out” universal property (a tensor product or unit object in a multicategory)
with an object having a “mapping in” universal property (a cartesian product or
terminal object), in the strong sense that if either exists then it is also the other.
This sort of “ambidextrous” universal property appears elsewhere in category
theory as well. For instance, the splitting of an idempotent can be regarded as
either a limit or a colimit; in a category enriched over abelian monoids, finite
products and coproducts coincide; and more generally for any kind of enrichment
there is a notion of “absolute (co)limit” [Str83]. Thus, although multicategories
are not “enriched categories” in the usual sense, we could say informally that in

2.6. SOME GENERALIZED MULTICATEGORIES 119

a cartesian multicategory products are absolute limits, while in a semicartesian
multicategory terminal objects are. See also Exercise 2.6.5.

Finally, we observe that closedness can be naturally characterized multicate-
gorically. Suppose for simplicity that S contains at least all bijections. Then we
say an S-multicategory is closed if for each pair of objects A and B there is a
specified object A(B and a morphism χ : (A(B,A)→ B postcomposition
with which defines bijections

(χ ◦1 −) :M(C1, . . . , Cn;A(B) ∼−→M(C1, . . . , Cn, A;B)

for all C1, . . . , Cn. (If S does not contain the bijections, we would just have to
consider “left and right closedness” separately.) The following is then straight-
forward.

Theorem 2.6.9. A symmetric monoidal category is closed if and only if its
underlying multicategory is. Moreover, for all the above values of S that contain
the bijections, this defines an equivalence of categories.

Of course, cartesian closed categories are just closed cartesian monoidal
categories, so they are equivalent to closed cartesian multicategories.

Exercises

Exercise 2.6.1. Fill in the details in the proof of Theorems 2.6.5 to 2.6.7.

Exercise 2.6.2. Let S be a faithful cartesian club.

(a) Prove that if S contains the transposition {1, 2} ∼−→ {1, 2}, then it contains
all bijections.

(b) Prove that if S contains the transposition {1, 2} ∼−→ {1, 2} and also the
injection ∅ → {1}, then it contains all injections.

(c) Prove that if S contains the transposition {1, 2} ∼−→ {1, 2} and also the
surjection {1, 2} → {1}, then it contains all surjections.

Exercise 2.6.3. Define one-place versions of S-multicategories and show that
they are equivalent to the multi-composition version defined in the text.

Exercise 2.6.4. Show that representable cartesian multicategories with coproducts
are equivalent to distributive categories.

Exercise 2.6.5. Of course, for any S a functor between S-multicategories is
required to preserve the σ-actions. Prove that:

(a) Any functor between semicartesian multicategories must preserve unit
objects / terminal objects.

(b) Any functor between cartesian multicategories must preserve tensor products
/ cartesian products.

120 CHAPTER 2. SIMPLE TYPE THEORIES

Exercise 2.6.6. Define a notion of relevance monoidal category, by adding
“natural diagonals” to a symmetric monoidal category, and show that such
monoidal categories are equivalent to representable relevance multicategories.
(See [DP07].)

Exercise 2.6.7. Define a notion of faithful cocartesian club and a corre-
sponding notion of generalized multicategory that includes cocartesian monoidal
categories as the maximal case.

2.7 Intuitionistic logic

We are now aiming at type theories for the generalized multicategories considered
in §2.6, along with the extra structures that they may have (tensor products,
cartesian products, coproducts, and closedness). In this section we start with
the posetal case, which is also where our type theory at last begins to look rather
like logic.

2.7.1 S-monoidal lattices

According to principle (‡) from §2.1, the additional action by σ’s in an S-
multicategory should be represented by structural rules in a type theory. These
rules are generally formulated and named as follows.

Γ, A,B,∆ ` C
Γ, B,A,∆ ` C

exchange
Γ,∆ ` C

Γ, A,∆ ` C
weakening

Γ, A,A,∆ ` C
Γ, A,∆ ` C

contraction

The correspondence between kinds of multicategory and structural rules2 should
not be surprising:

S-multicategories structural rules
symmetric multicategories exchange
cartesian multicategories exchange, weakening, contraction

semicartesian (symmetric) multicategories exchange, weakening
relevance multicategories exchange, contraction

Note that these structural rules refer only to single transpositions, projections,
and duplications, rather than arbitrary functions in S. This is similar to how, as
we have noted, cut is usually stated in type theory using one-place composites
rather than a multi-composition. As in that case, the smaller operations suffice
to generate the more general ones (c.f. Exercise 2.6.2).

2One can consider weakening and/or contraction without exchange, just as one might
consider non-symmetric semicartesian or relevance multicategories. But this takes us rather
far afield from categorical structures of general interest, so we leave it to the reader.

2.7. INTUITIONISTIC LOGIC 121

What is somewhat less clear is how these rules can be made admissible in line
with principle (§). For now let us ignore this question and take these rules (when
we want them) as primitive (recall Remark 1.2.6). This makes the treatment
more parametric in S, and makes little difference for presenting free posets, since
in that case we are only interested in the existence or nonexistence of derivations.
We will address the question of admissibility in §§2.7.2, 2.8 and 2.10.

For the rest of this subsection, let S be one of the four possibilities above
(so in particular, it will always contain the bijections). All our type theories will
then include the appropriate primitive structural rules, according to the above
table. Our type operations will be the posetal versions of all the ones we saw in
§2.5 — ⊗,1,∧,>,∨,⊥ — and also an internal-hom for ⊗, which we denote by
A(B. (We postponed introducing the internal-hom until now only to avoid
worrying about left- versus right-closedness in non-symmetric multicategories.)
Thus, the categorical structure in question is closed S-monoidal lattices. Of
course, as in §2.5 we can remove any of these operations without affecting the
others, obtaining a type theory for weaker categorical structures.

The primitive rules of the natural deduction for closed S-monoidal
lattices are shown in Figure 2.7. Except for the structural rules (discussed
above) and (, they are all obtained by removing the term annotations from
the theory of §2.5. The only other change is that since we always include the
exchange rule as primitive, in the rules ⊗E,1E,∨E,0E we don’t need to put
Ψ in the middle of the context but are free to put it on one side. As usual, we
have also omitted the rules for the judgment ` A type, which just say that all
the objects of G are types, as are 1,>,⊥ and A⊗B,A ∧B,A ∨B,A(B if A
and B are.

The introduction rule for (is simply one direction of its universal property
from §2.2. The elimination rule is the inverse direction, but with a cut built
in to make the context of the conclusion general (modulo a splitting). That is,
(E can be derived from the opposite of (I and cut:

Ψ ` A
Γ ` A(B

Γ, A ` B
Γ,Ψ ` B

Note that, as promised in §2.1, by using sequents with multiple types in the
context, we can formulate the rules for (without reference to ∧/×.

The contraction rule gives the cut-admissibility theorem a new wrinkle. Let
us first consider the cases without contraction, which are more straightforward.

Lemma 2.7.1. If S consists of the bijections or the injections, then cut is
admissible in the natural deduction for closed S-monoidal lattices: if we have
derivations of Ψ ` A and Γ, A,∆ ` B then we also have Γ,Ψ,∆ ` B.

Proof. As always, we induct on the derivation of Γ, A,∆ ` B. The cases for
most of the connectives are just like those in Theorem 2.5.4, and those for (
are nothing new. However, now we have a new possibility: the derivation might

122 CHAPTER 2. SIMPLE TYPE THEORIES

Γ, A,B,∆ ` C
Γ, B,A,∆ ` C

exchange

Γ,∆ ` C
Γ, A,∆ ` C

weakening
if injections ⊆ S

Γ, A,A,∆ ` C
Γ, A,∆ ` C

contraction
if surjections ⊆ S

` A type

A ` A
(A1, . . . , An ≤ B) ∈ G Γ1 ` A1 . . . Γn ` An

Γ1, . . . ,Γn ` B

Γ ` A ∆ ` B
Γ,∆ ` A⊗B

⊗I
Ψ ` A⊗B Γ, A,B ` C

Γ,Ψ ` C
⊗E

() ` 1
1I

Ψ ` 1 Γ ` A
Γ,Ψ ` C

1E

Γ ` A Γ ` B
Γ ` A ∧B

∧I
Γ ` A ∧B

Γ ` A
∧E1

Γ ` A ∧B
Γ ` B

∧E2

Γ ` >
>I

Ψ ` ⊥
Γ,Ψ ` C

⊥E

Γ ` A
Γ ` A ∨B

∨I1
Γ ` B

Γ ` A ∨B
∨I2

Ψ ` A ∨B Γ, A ` C Γ, B ` C
Γ,Ψ ` C

∨E

Γ, A ` B
Γ ` A(B

(I
Ψ ` A Γ ` A(B

Γ,Ψ ` B
(E

Figure 2.7: Natural deduction for closed S-monoidal lattices

2.7. INTUITIONISTIC LOGIC 123

end with a primitive structural rule (exchange or weakening — our hypothesis
on S rules out contraction).

Firstly, if the structural rule does not affect the type A, then we can simply
commute it past the cut. For instance, if we have Ψ ` A and Γ, A,∆1, C,∆2 `
B arising by weakening from Γ, A,∆1,∆2 ` B, we can inductively obtain
Γ,Ψ,∆1,∆2 ` B and then apply weakening again to get Γ,Ψ,∆1, C,∆2 ` B.

Secondly, essentially the same is true if it is an exchange that does affect
A. For instance, if we have Ψ ` A and Γ, A,C,∆ ` B arising by exchange from
Γ, C,A,∆ ` B, we can inductively obtain Γ, C,Ψ,∆ ` B, and then re-apply
exchange once for each type in Ψ to get Γ,Ψ, C,∆ ` B. (It does matter here that
we have formulated the admissible cut rule with A in the middle of the context
rather than on one side, even though we have the exchange rule; otherwise the
induction would fail to go through here.)

Finally, suppose it is a weakening that affects A, so we have Ψ ` A and
Γ, A,∆ ` B arising by weakening from Γ,∆ ` B. In this case we can forget
about the derivation of Ψ ` A and just weaken Γ,∆ ` B once for each type in Ψ
to get Γ,Ψ,∆ ` B.

If we try to extend this to theories with contraction, however, we have a
problem. Suppose the derivation of Γ, A,∆ ` B ends with a contraction that
affects A, so that we have Ψ ` A and Γ, A,∆ ` B arising by contraction from
Γ, A,A,∆ ` B. Then we would like to inductively cut the latter with Ψ ` A
twice to obtain Γ,Ψ,Ψ,∆ ` B, transforming

Ψ ` A
Γ, A,A,∆ ` B

Γ, A,∆ ` B
contraction

Γ,Ψ,∆ ` B
cut

into

Ψ ` A
Ψ ` A Γ, A,A,∆ ` B

Γ,Ψ, A,∆,` B
cut

Γ,Ψ,Ψ,∆ ` B
cut

After this we could apply exchanges to pair up the two copies of each type in Ψ,
and finally a contraction on each of them to eliminate the duplicates. However,
now we have the sort of problem that we did in the proof of Theorem 2.3.5:
the derivation of Γ,Ψ, A,∆,` B that we obtain from our first application of
the inductive hypothesis may not be “smaller” than our given derivation, so
we cannot apply the inductive hypothesis to it again. Moreover, the solution
sketched there (inducting first on types and then on derivations) does not work
here, since the types are not changing.

The standard solution used in type theory is to generalize the cut rule to a
rule called “mix” that enables the induction to go through. In our case, the mix
rule says that if we have derivations of Ψ ` A and Γ ` B, where Γ contains one
or more copies of A, then we can construct a derivation of Ψ,ΓA ` B, where ΓA

is Γ with one or more copies of A removed. In other words, we build a certain

124 CHAPTER 2. SIMPLE TYPE THEORIES

amount of contraction into the induction hypothesis. This works, but a more
categorically principled solution is to use the multi-cut as in Theorem 2.3.8. This
amounts to approximately the same thing, but feels less ad hoc to a category
theorist (at least, it does to the author).

Lemma 2.7.2. For any of our four S’s, multi-cut is admissible in the natural
deduction for closed S-monoidal lattices: if we have derivations of Ψi ` Ai for
1 ≤ i ≤ n, and also A1, . . . , An ` B, then we can construct a derivation of
Ψ1, . . . ,Ψn ` B.

Proof. The non-structural rules are easy, just as before. (Recall that in general,
cut is very straightforward for natural deductions because all the rules act only
on the right. With this in mind it is unsurprising that primitive structural rules
are problematic, since they act on the left.)

Now, however, the structural rules are almost just as easy. If our derivation
of A1, . . . , An ` B ends with an exchange, we can simply switch two of the
derivations Ψi ` Ai and induct. Similarly, if it ends with a weakening, we can
just forget about one of the Ψi ` Ai and induct. Finally, if it ends with a
contraction, we can again induct on the premise, using one of the derivations
Ψi ` Ai twice.

Now we can prove the initiality theorem just as usual.

Theorem 2.7.3. For any relational multigraph G and any of our four S’s, the
free closed S-monoidal lattice on G can be presented by this natural deduction,
with (A1, . . . , An) ≤ B holding just when A1, . . . , An ` B is derivable.

Proof. Lemma 2.7.2 (together with the identity rule) gives us a multiposet, the
rules for the type operations make it representable, closed, and a lattice, and the
structural rules make it an S-multiposet. Thus it lives in the correct category;
and its freeness follows by induction as usual.

2.7.2 Heyting algebras

Let us now specialize to the cartesian case, where we have all three structural
rules. Thus the categorical structure in question is cartesian closed lattices,
which are also known as Heyting algebras. This theory is simpler because ⊗
and 1 coincide with ∧ and > (see Exercise 2.7.1), so we can omit the former
ones. A second reason it is simpler is because it is easy to make the structural
rules admissible. The key observation is the following.

Lemma 2.7.4. In the presence of exchange, contraction, and weakening, the

2.7. INTUITIONISTIC LOGIC 125

following rules are inter-derivable with the rules ⊥E, ∨E, (E from Figure 2.7.

` A type A ∈ Γ

Γ ` A
id′

(A1, . . . , An ≤ B) ∈ G Γ ` A1 . . . Γ ` An
Γ ` B

f ′
Γ ` ⊥
Γ ` C

⊥E′

Γ ` A ∨B Γ, A ` C Γ, B ` C
Γ ` C

∨E′
Γ ` A(B Γ ` A

Γ ` B
(E′

Proof. Here are the referenced rules from Figure 2.7:

` A type

A ` A
id

(A1, . . . , An ≤ B) ∈ G Γ1 ` A1 . . . Γn ` An
Γ1, . . . ,Γn ` B

f

Ψ ` ⊥
Γ,Ψ ` C

⊥E
Ψ ` A ∨B Γ, A ` C Γ, B ` C

Γ,Ψ ` C
∨E

Γ ` A(B Ψ ` A
Γ,Ψ ` B

(E

Clearly id is a special case of id′, while conversely id′ can be derived from id
followed by weakening. And ⊥E′ is a special case of ⊥E, while f ′ and ∨E′
and (E′ can be derived from f and ∨E and (E followed by exchange and
contraction to turn contexts like Γ,Γ into Γ. Conversely, given the premises
of any of these “unprimed” rules, we can weaken each Γ and Ψ to Γ,Ψ (or Γi
to Γ1, . . . ,Γn in the case of f), then apply the primed version of that rule to
deduce the conclusion of the unprimed rule.

If we replace the rules in question by their modified versions, then all the
rules will have the property that the context of the conclusion is arbitrary, while
the context of the premises differ from the context of the conclusion at most by
addition of a new type. In other words, as we proceed down a derivation tree, we
only ever remove types from the context; and dually as we proceed up a tree we
only ever add to the context. This will enable us to “push the structural rules
up” past all primitive rules until we get to id, thereby making them admissible.

For convenience, we collect all the rules of this modified natural deduction
for Heyting algebras in Figure 2.8. Note that we change our notation and
write A(B as A⇒ B.

Lemma 2.7.5. All the structural rules of exchange, weakening, and contraction
are admissible in the natural deduction for Heyting algebras.

Proof. It will suffice to prove admissibility of the following rule, for any function
σ : {1, . . . ,m} → {1, . . . , n}:

Aσ1, . . . , Aσm ` B
A1, . . . , An ` B

126 CHAPTER 2. SIMPLE TYPE THEORIES

` A type A ∈ Γ

Γ ` A
id

(A1, . . . , An ≤ B) ∈ G Γ ` A1 . . . Γ ` An
Γ ` B

f

Γ ` A Γ ` B
Γ ` A ∧B

∧I
Γ ` A ∧B

Γ ` A
∧E1

Γ ` A ∧B
Γ ` B

∧E2

Γ ` >
>I

Γ ` ⊥
Γ ` C

⊥E

Γ ` A
Γ ` A ∨B

∨I1
Γ ` B

Γ ` A ∨B
∨I2

Γ ` A ∨B Γ, A ` C Γ, B ` C
Γ ` C

∨E

Γ, A ` B
Γ ` A⇒ B

⇒I
Γ ` A⇒ B Γ ` A

Γ ` B
⇒E

Figure 2.8: Natural deduction for Heyting algebras

2.7. INTUITIONISTIC LOGIC 127

This is almost immediate from the fact that the premises of all rules have the
same context as the conclusion, perhaps with a type added: regardless of how a
derivation of Aσ1, . . . , Aσm ` B ends, we can apply the inductive hypothesis to
its premises (perhaps passing to σ t id : {1, . . . ,m+ 1} → {1, . . . , n+ 1}) and
then re-apply the final rule.

The only exception is the rule id, for which we observe that if A appears in
the context Aσ1, . . . , Aσm, then A = Aσj for some 1 ≤ j ≤ m, and hence A = Ai
for some 1 ≤ i ≤ n (namely, i = σj). Thus, we can also apply the same rule to
obtain A1, . . . , An ` Ai.

Lemma 2.7.6. The free Heyting algebra on a relational multigraph G can be
described by the natural deduction for Heyting algebras.

Proof. Left to the reader. This will also follow as a special case of Theorem 2.8.8.

2.7.3 Natural deduction and logic

Let us now say a few words about what the natural deduction for Heyting
algebras has to do with logic. For a reader who thinks of logical connectives
in terms of their action on truth values (e.g. “if A then B” is true unless A is
true and B is false), one way to make the connection to logic is to note that the
poset of truth values

2 = {false < true}

is a Heyting algebra, where the operations ∧,>,∨,⊥,⇒ correspond to “and”,
“true”, “or”, “false”, and “implies”. (One way to see this easily is to identify 2,
up to equivalence, with the full subcategory of Set consisting of sets having at
most one element.)

Now suppose G is a relational multigraph, whose objects we call proposi-
tional variables, and suppose furthermore that we have a map of relational
multigraphs ν : G → 2. In other words, we assign a truth value to each proposi-
tional variable, in such a way that if (A1, A2, . . . , An) ≤ B in G, and if ν(Ai) is
true for all i, then also ν(B) is true. Then by Theorem 2.7.3 we have an induced
map FHeytingG → 2 of Heyting algebras.

The objects of FHeytingG are propositional formulas, built out of the propo-
sitional variables by the operations ∧,>,∨,⊥,⇒ which we now regard as denot-
ing the logical connectives “and”, “true”, “or”, “false”, and “implies”. Since
FHeytingG → 2 is a map of Heyting algebras, it extends the truth assignment
ν to all such formulas by using the “truth tables” for all the connectives, e.g.
ν(A ∧ B) is true just when ν(A) and ν(B) are both true, etc. Finally, the
fact that FHeytingG → 2 preserves inequalities means that if A1, . . . , An ` B is
derivable in the natural deduction for Heyting algebras, and if ν(Ai) is true for
all i, then also ν(B) is true (where now the Ai and B are arbitrary formulas,
not just propositional variables).

As a special case, if G has no nontrivial relations, then any derivable judgment
() ` B exhibits the propositional formula B as a tautology: a statement that

128 CHAPTER 2. SIMPLE TYPE THEORIES

becomes true whatever truth values are substituted for its propositional variables.
For instance, here is a derivation exhibiting (A∧ (B ∨C))⇒ ((A∧B)∨ (A∧C))
as a tautology:

A∧(B∨C) ` A∧(B∨C)

A∧(B∨C) ` B∨C

A∧(B∨C), B ` A∧(B∨C)

A∧(B∨C), B ` A A∧(B∨C), B ` B

A∧(B∨C), B ` A∧B

A∧(B∨C), B ` (A∧B)∨(A∧C) (and dually)

A∧(B∨C) ` (A∧B)∨(A∧C)

() ` (A∧(B∨C)) ⇒ ((A∧B)∨(A∧C))

Thus, the natural deduction for Heyting algebras can be used as a means to
derive tautologies in propositional logic.

However, there is more to the relationship between type theory and logic
than this. There are many ways to derive tautologies, including methods such as
simply plugging in all possible truth assignments for the propositional variables
and checking that the formula is always true. But the natural deduction for
Heyting algebras has the important property that it (at least roughly) mirrors
the process of ordinary informal mathematical reasoning.

It is easiest to see this if we reformulate the theory a little. Let us omit the
contexts “Γ `” from all judgments in a derivation tree, instead writing simply the
consequent A. In place of the id rule deriving Γ ` A, we write simply “A” without
any justification, and call it a hypothesis. Finally, when a type A is removed from
the context on our way down the tree, we cross off that hypothesis everywhere
that it appears above, and say that the hypothesis has been discharged. At the
end, the set of remaining hypothesis is the antecedent of the conclusion; if no
hypotheses remain undischarged, we have derived a tautology.

For instance, the above derivation of the distributive law would be written
in this style as

(((
(((A ∧ (B ∨ C)

B ∨ C

((((
((A ∧ (B ∨ C)

A ��B

A ∧B
(A ∧B) ∨ (A ∧ C)

((((
((A ∧ (B ∨ C)

A �C

A ∧ C
(A ∧B) ∨ (A ∧ C)

(A ∧B) ∨ (A ∧ C)
∨E

(A ∧ (B ∨ C))⇒ ((A ∧B) ∨ (A ∧ C))
⇒I

Note that there is some ambiguity; it is not obvious from looking at the derivation
which rule caused which hypothesis to be discharged. In the above example,
the hypotheses B and C are discharged by the ∨E rule, while the hypothesis
A ∧ (B ∨ C) (everywhere it appears) is discharged by the ⇒I rule. Sometimes
people annotate the discharges in some way to indicate this.

However, the real point of a representation like this is that the process of
writing it, from the top down, is supposed to mirror the process of informal
reasoning. First we assume A ∧ (B ∨ C), and deduce from it both A and B ∨ C.
Then we use B∨C by additionally assuming B and C in two separate cases (sub-
derivations), and in each of those cases we separately deduce (A ∧B) ∨ (A ∧ C)

2.7. INTUITIONISTIC LOGIC 129

(by way of A ∧B and A ∧ C respectively). Thus, completing those cases (and
ending our assumptions of B and C) we have (A∧B)∨ (A∧C). Finally, ending
our assumption of A ∧ (B ∨ C), we have (A ∧ (B ∨ C))⇒ ((A ∧B) ∨ (A ∧ C)).

From this perspective, the rules in Figure 2.8 can also be glossed in the
language of “proof strategies”. For instance, ∧I says that “to prove A ∧B, it
suffices to prove A and B separately”, while ⇒E says that “if we know A⇒ B,
and we also know A, then we can conclude B” (the rule of modus ponens). We
encourage the reader to similarly gloss the other rules.

While it is arguable whether this exactly mirrors the process of informal
reasoning, it certainly has a close kinship with it — much closer than the
production of tautologies by checking all possible truth assignments. In particular,
it includes one essential aspect of informal reasoning: the ability to reason under
a temporary assumption and then “discharge” that assumption in reaching some
other conclusion. This sort of hypothetical reasoning is central to everyday
mathematics, so the fact that it also appears in natural deduction logic is a
strong argument in favor of the “naturalness” of the latter.

This is the real origin of the name “natural deduction”. In fact, historically,
this representation with discharged hypotheses came first, and only later was it
rewritten to carry along the context, and then generalized to theories without
contraction and weakening. Other systems of formal logic, such as “Hilbert-style
calculi” (see Exercise 2.7.9), though they can derive the same class of tautologies,
do not really include hypothetical reasoning as such, and hence do not model
informal reasoning as well.

Remark 2.7.7 (TODO: Frobenius/Hopf for ∨, for reasoning with extra hypotheses,
and distributivity without ⇒.).

Now, it may seem that the logical expressivity of the natural deduction
for Heyting algebras is lacking because there is no operation corresponding to
negation. However, we can do pretty well by defining ¬A to mean A ⇒ ⊥, so
that its rules are

Γ, A ` ⊥
Γ ` ¬A

Γ ` ¬A Γ ` A
Γ ` ⊥

In other words, to prove ¬A, it suffices to show that assuming A leads to a
contradiction, while if we have both ¬A and A we obtain a contradiction. Using
these rules, here is a derivation of one of “de Morgan’s laws” as a tautology:

¬(A ∨B), A ` ¬(A ∨B)

¬(A ∨B), A ` A

¬(A ∨B), A ` A ∨B

¬(A ∨B), A ` ⊥
¬(A ∨B) ` ¬A (and dually)

¬(A ∨B) ` ¬A ∧ ¬B
() ` ¬(A ∨B)⇒ (¬A ∧ ¬B)

However, not every tautology can be derived this way. In particular, ¬¬A⇒ A
(the “law of double negation”) and A ∨ ¬A (the “law of excluded middle”) are

130 CHAPTER 2. SIMPLE TYPE THEORIES

not derivable, because although they hold in 2, their analogues fail to hold in
other Heyting algebras. (In fact, they hold in a Heyting algebra exactly when
that Heyting algebra is a Boolean algebra; see Exercise 2.7.3.) Thus, although
we have something that “looks like logic”, it is not exactly classical logic.

One way to resolve this is to simply add another rule, such as the following
for “proof by contradiction”:

Γ,¬A ` ⊥
Γ ` A

(The rule for ¬A derived from ⇒ is the form of “proof by contradiction” where
we prove a statement is false by assuming it is true and deriving a contradiction;
here we are considering the opposite form where we prove a statement to be
true by assuming it to be false and deriving a contradiction.) This mirrors the
process of informal reasoning in classical mathematics fairly closely, though it is
a bit problematic from a type-theoretic perspective (e.g. it fails the principles
enunciated in §2.1). As we will see in chapter 3, one can also forumlate a
well-behaved type theory that it can prove all classical tautologies, by restoring
the left/right and ∧/∨ symmetries.

However, it is also valuable to observe that conversely, if we are willing to
generalize our notion of “logic”, we obtain something much more generally appli-
cable. Indeed, this is really the whole point of categorical logic, as put forward
in §0.1: we can apply “set-like” reasoning to objects of arbitrary categories as
long as we are careful about what sort of reasoning we use.

So far, we have applied this principle mainly to equational reasoning about
different kinds of terms. However, we now have a type theory that is powerful
enough to codify significant amounts of mathematical reasoning (though not
yet anything involving quantifiers such as “for all” and “there exists”; that will
come in chapter 4). Thus, we can lift our notion of “generalized logic” back to
informal mathematical reasoning. It takes a bit of practice to learn to write
informal mathematical proofs that could (at least in principle) be codified in
such a generalized logic, but it is eminently possible. (It is much more possible
because, as discussed above, our “generalized logic” is expressed in a style that
already closely mirrors ordinary mathematical reasoning; we simply have to learn
which familiar styles of argument are valid in what situations.)

The payoff is that the result is much more general than it appears, since it
is true “internally to any Heyting algebra”. By contrast, ordinary (“classical”)
mathematical reasoning is only valid in Boolean algebras (see Exercise 2.7.3). Lest
the reader think that Heyting algebras seem esoteric, we point out that the lattice
of open subsets of any topological space is a Heyting algebra (Exercise 2.7.5).

Remark 2.7.8. In the context of logic, the initiality theorem (Lemma 2.7.6)
corresponds to what are traditionally called soundness and completeness theo-
rems. A soundness theorem says informally “if something is provable, then it
is true in all models”. This follows from Lemma 2.7.6 because the inequalities
in a free Heyting algebra are exactly those that are provable (i.e. derivable)
in the type theory; thus, if something is provable, then it is true in the free

2.7. INTUITIONISTIC LOGIC 131

Heyting algebra, and therefore also in every other Heyting algebra. Dually, a
completeness theorem says informally “if something is true in all models, then it
is provable”. This also follows from Lemma 2.7.6 because if something is true in
all Heyting algebras, then it is in particular true in a free Heyting algebra; and
hence, by our construction of the latter, it is provable in the type theory.

The “generalized logic” corresponding to Heyting algebras is called intu-
itionistic or constructive logic, because of its similarity to the mathematics
advocated by certain mathematicians calling themselves “intuitionist” or “con-
structive” in the early 20th century. While we are stuck with these labels, it
is probably best (for a classically trained category theorist first encountering
the notion) not to read too much into them. The point is simply that we make
our mathematics more general by generalizing our logic, and this is the logic
that corresponds naturally to cartesian closed lattices, which are certainly a
categorically natural notion.

The observation that the logical operations of “and”, “or”, “if-then”, and
so on in the poset 2 have the same universal properties (and hence can be
represented by the same type operations) as the operations A×B, A+B, BA

in the category Set has a distinguished pedigree and many names: propositions
as types, proofs as terms, or the Curry–Howard correspondence (see [Wad15]
for some history). As we will see, this correspondence is also central to the use
of dependent type theory (chapter 6) as a foundation for mathematics. Some
“constructivist” mathematicians have argued that this correspondence should
determine the meanings of the logical operations in terms of proofs — that
is, a proof of “P and Q” should be a pair (p, q) where p is a proof of P and
q is a proof of Q; a proof of “if P then Q” should be a function transforming
any proof of P into a proof of Q; and so on. This is sometimes called the
Brouwer–Heyting–Kolmogorov (BHK) interpretation. However, we will have
little to say about the philosophical side of constructive logic.

In any case, having made these observations in the case of cartesian closed
lattices, it is natural to entertain similar ideas for other values of S. Roughly
speaking, the names of the corresponding “generalized logics” are:

S generalized logic
cartesian intuitionistic logic

symmetric linear logic
semicartesian affine logic

relevance relevance logic

To be precise, we are currently talking about variants of all these logics that
should be qualified as “intuitionistic”; there are also “classical” versions of
linear, affine, and relevance logics in which the laws of double negation and
excluded middle hold. Moreover, at least in the linear case one should also add a
phrase like “multiplicative-additive”3 to describe our current theory, because the

3In the lingo of linear logic, ⊗ is a “multiplicative” connective, while ∧ and ∨ are “additive”.
Classical linear logic also includes another multiplicative connective called ` that is dual to ⊗
in the same way that ∨ is dual to ∧; see §3.2.

132 CHAPTER 2. SIMPLE TYPE THEORIES

name “linear logic” usually refers to a system with some additional modalities.
Furthermore, at this point all of them should have the prefix “propositional”,
since we are not yet considering quantifiers of any sort (“there exists” and “for
all”).

The name “linear logic” comes from the same intuition as our use of “linearity”
to describe Lemma 2.4.2. The name “affine logic” is similarly inspired by the
fact that while a linear transformation T (~v) = A~v must use its argument exactly

once in each term, an affine transformation T (~v) = A~v +~b also has terms that
do not use its argument at all. Both of these logics are primarily studied by
computer scientists; the distinction between ⊗ and ∧ can be interpreted in terms
of “resource usage” (but that is far beyond our scope here).

Finally, “relevance logic” was invented by some philosophers seeking to avoid
certain facts about implication that they regarded as “paradoxical” because
their “if” parts are not “relevant” to their “then” parts, such as A⇒ (B ⇒ A).
The straightforward derivation of this tautology in our type theory requires
weakening:

A ` A
A,B ` A

weakening

A ` (B ⇒ A)

() ` A⇒ (B ⇒ A)

and in fact the type theory for closed relevance monoidal lattices cannot derive
() ` A((B(A) (although this is not obvious; see Exercises 2.7.7 and 2.7.8).

The most commonly used relevance logics satisfy other principles that our
type theory does not, notably the distributive law A∧(B∨C) ∼= (A∧B)∨(A∧C)
(note that our derivation of this above also used weakening). Of course, any closed
monoidal lattice satisfies the distributive law A⊗ (B ∨C) ∼= (A⊗B) ∨ (A⊗C),
but as we have observed, both weakening and contraction are necessary to force
⊗ to coincide with ∧. (It is possible to formulate type theories that ensure the
∧/∨ distributive law as well, but this requires a fancier notion of generalized
multicategory.)

Exercises

Exercise 2.7.1. Prove Theorems 2.6.6 and 2.6.7 using our posetal type theories.
Specifically:

(a) If we have exchange and weakening, prove that 1 ∼= >.

(b) If we have exchange, weakening, and contraction, prove that A⊗B ∼= A×B.

Exercise 2.7.2. Prove that ¬¬(P∨¬P) is an intuitionistic tautology, i.e. construct
a derivation of () ` ¬¬(P ∨ ¬P) in the natural deduction for Heyting algebras.

Exercise 2.7.3. Prove that the following are equivalent for a Heyting algebra:

(a) The law of excluded middle P ∨ ¬P is true, i.e. P ∨ ¬P is the top element
for all P .

2.7. INTUITIONISTIC LOGIC 133

(b) The law of double negation ¬¬P ⇒ P is true.

(c) The Heyting algebra is a Boolean algebra, i.e. every element P has a
“complement” P such that P ∧ P = ⊥ and P ∨ P = >.

Exercise 2.7.4. Of the four “de Morgan’s laws”, three are intuitionistic tautologies
and one is not. Construct derivations of three of the following sequents in the
natural deduction for Heyting algebras:

¬(P ∨Q) ` ¬P ∧ ¬Q
¬(P ∧Q) ` ¬P ∨ ¬Q
¬P ∧ ¬Q ` ¬(P ∨Q)

¬P ∨ ¬Q ` ¬(P ∧Q)

Exercise 2.7.5. A frame is a lattice with infinitary joins satisfying the infinite
distributive law A ∧ (

∨
iBi)

∼=
∨
i(A ∧Bi).

(a) Prove that any (small) frame is a Heyting algebra.

(b) Prove that the lattice of open sets of any topological space is a frame.

(c) Describe a type theory for frames. This is called (propositional) geometric
logic.

Exercise 2.7.6. Give concrete examples of Heyting algebras satisfying the follow-
ing:

(a) There is an element P for which P ∨ ¬P is not the top element.

(b) There are elements P and Q for which the fourth de Morgan’s law (see
Exercise 2.7.4) does not hold.

Exercise 2.7.7. Describe a concrete example of a closed relevance monoidal lattice
containing two objects A and B such that there is no morphism from 1 (the
unit object) to A((B(A). Deduce that () ` A((B(A) is not derivable
in the type theory for closed relevance monoidal lattices.

Exercise 2.7.8. One of the advantages of sequent calculus over natural deduction
is that because all of its rules introduce operations on the left or the right, it is
easier to conclude underivability theorems.

(a) Define a sequent calculus for closed S-monoidal lattices, and prove the cut
admissibility and initiality theorems.

(b) Prove that () ` A((B(A) is not derivable in the sequent calculus for
closed relevance monoidal lattices, by ruling out all possible ways that such
a derivation could end.

134 CHAPTER 2. SIMPLE TYPE THEORIES

Exercise 2.7.9. Another way of deriving tautologies is called a Hilbert system.
A Hilbert system can be formulated as a sort of type theory where the judgments
all have empty context, i.e. are of the form ` A where A is a propositional
formula. Instead of the “modular” left/right rules of sequent calculus or the
introduction/elimination rules of natural deduction, where the rules for each
connective do not refer to any other connective, a Hilbert system gives a special
place to implication ⇒. The only rule with premises4 is the empty-context form
of ⇒E, modus ponens:

` A⇒ B ` A
` B

The behavior of all other connectives is specified by axioms (rules with no
premises, other than the well-formedness of the formulas appearing in them).
For instance, we complete the description of ⇒ with the following axioms:

` A type

` A⇒ A

` A type ` B type

` A⇒ (B → A)

` A type ` B type ` C type

` (A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))

The axioms for the remaining connectives are (omitting the obvious premises
and the `):

A⇒ (B ⇒ (A ∧B)) (A ∧B)⇒ A (A ∧B)⇒ B

A⇒ (A ∨B) B ⇒ (A ∨B) (A⇒ C)⇒ ((B ⇒ C)⇒ ((A ∨B)⇒ C))

A⇒ > ⊥ ⇒ A

Prove that this Hilbert system derives exactly the same tautologies as the natural
deduction for Heyting algebras.

(The main reasons for using a Hilbert system seem to be that it never
changes the context and has very few rules. This sometimes makes metatheoretic
arguments easier, but at the cost of greater distance from informal mathematics,
since as we have remarked the latter gives a central place to hypothetical
reasoning. It should also be noted that the symbol ` is often used differently in
the context of Hilbert systems; rather than ` being part of each judgment, the
notation “Γ ` A” means that we can derive A (that is, ` A in our notation) in
the Hilbert system augmented by all the formulas in Γ as additional axioms.)

Exercise 2.7.10. Is there a well-behaved type theory (i.e. having admissible
cut and an initiality theorem) corresponding to the (posetal version of the)
“cocartesian multicategories” of Exercise 2.6.7? (As of this writing, the answer is
not known to the author.)

4Hilbert systems for more complicated logics have one or two more rules with premises, but
in general there are very few.

2.8. SIMPLY TYPED λ-CALCULUS 135

` A type (x : A) ∈ Γ

Γ ` x : A
id

f ∈ G(A1, . . . , An;B) Γ `M1 : A1 . . . Γ `Mn : An

Γ ` f(M1, . . . ,Mn) : B
f

Γ `M : A Γ ` N : B

Γ ` 〈M,N〉 : A×B
×I

Γ `M : A×B
Γ ` πA,B1 (M) : A

×E1

Γ `M : A×B
Γ ` πA,B2 (M) : B

×E2

Γ ` ∗ : 1
1I

Γ `M : 0

Γ ` match0(M) : C
0E

Γ `M : A

Γ ` inl(M) : A+B
+I1

Γ ` N : B

Γ ` inr(N) : A+B
+I2

Γ `M : A+B Γ, u : A ` P : C Γ, v : B ` Q : C

Γ ` matchA+B(M,u.P, v.Q) : C
+E

Γ, x : A `M : B

Γ ` λx.M : A→ B
→I

Γ `M : A→ B Γ ` N : A

Γ `MN : B
→E

Figure 2.9: The simply typed λ-calculus with products and coproducts

2.8 Simply typed λ-calculus

We now move back up the ladder from posets to categories. In this case it
becomes more important to adhere to principle (§) and make our structural rules
admissible. Otherwise our derivations would become polluted with applications
of these rules, and our terms (which, as ever, we want to be simply syntax for
derivations) would be likewise quite messy-looking. We have already seen in
Lemma 2.7.5 that the structural rules can be made admissible in the cartesian
case where we want all of them, so we consider that case first. In addition to
being the easiest, this is probably also the most commonly used case.

We begin by introducing terms for the rules from §2.7.2, as shown in Figure 2.9.
As in §2.7.2, we omit ⊗ and 1 since they coincide with ∧ and >. We also switch
back to categorical notations ×,1,+,0 instead of ∧,>,∨,⊥. We also write
A → B instead of A (B; this has the pleasing consequence that the term
syntax M : A → B looks the same as the common mathematical notation for
functions.

136 CHAPTER 2. SIMPLE TYPE THEORIES

Most of the term annotations should be familiar from §2.5; indeed they are
even simpler, since the (expected) presence of the structural rules allows us to
omit some of the more verbose annotations. The rule →I introduces a new
kind of term, a λ-abstraction. Since the variable x appears in the premise but
not the conclusion, it must be bound in the resulting term; there is nothing
else to say, so we simply prefix the letter λ to indicate the rule. Intuitively, we
think of λx.M as meaning “the function that takes one argument, called x, and
returns the value of M (which includes x)”. For instance, λx.x2 denotes the
function that squares its argument, λx.(x+ 3) denotes the function that adds
three to its argument, and so on. Because of the importance of this operation,
the type theory of Figure 2.9, which we expect to correspond to cartesian closed
categories with coproducts, is called the simply typed λ-calculus (STLC)
with products and coproducts. (The unqualified “STLC” would omit the
rules for ×,1,+,0.)

The term annotation for the rule →E simply “pairs up” two terms, one
of which has type A → B and one of which has type A. Intuitively, we are
“applying” a function M : A→ B to an argument N : A. Technically there ought
also to be a label indicating the rule being applied to pair these terms up, such
as app(M,N). However, any system of notation has room for one operation
denoted by simple juxtaposition (e.g. in high-school algebra it is multiplication,
while in group theory it is the group operation), and the importance of the
type operation → leads us to choose →E for this honor in type theory. Most
mathematicians write f(a) for the application of a function f to an argument a;
since parentheses are used as usual for grouping, this notation is also valid here,
just as (x)(y) = xy in high-school algebra.

Lemma 2.8.1. If a term Γ `M : A is derivable in the simply typed λ-calculus,
then it has a unique derivation.

Proof. This is almost immediate. Since the premises of all rules have the same
context as the conclusion, perhaps with a type added, there is no ambiguity
about how to split things up, and hence no need for the uglier annotations used
in §2.5.

Lemma 2.8.2. The structural rules of exchange, contraction, and weakening are
admissible in the simply typed λ-calculus. Moreover, they make the derivations
into a cartesian multigraph (i.e. they are functorial as in Definition 2.6.4).

Proof. The proof is essentially the same as Lemma 2.7.5, carrying along terms
and variables; we prove the following rule, for any function σ : {1, . . . ,m} →
{1, . . . , n}:

y1 : Aσ1, . . . , ym : Aσm `M : B

x1 : A1, . . . , xn : An ` σ∗M : B

by pushing up through all rules until we get to id. Regarded as an operation on
terms, σ∗ is defined by the clause

σ∗yj = xσj

2.8. SIMPLY TYPED λ-CALCULUS 137

along with trivial “descending into subterms” clauses for all other terms, such as

σ∗〈M,N〉 = 〈σ∗M,σ∗N〉
σ∗match+(M,u.P, v.Q) = match+(σ∗M,u.(σ t id)∗P, v.(σ t id)∗Q)

and so on. Intuitively, we simply substitute the variable xσj for yj wherever it
appears, for all 1 ≤ j ≤ m. A similar induction proves that this operation is
functorial, yielding a cartesian multigraph.

In fact, if σ is injective — that is, it is composed of exchange and weakening
only — and if we choose variables yj = xσj (which is only possible if σ is
injective), then in fact σ∗M = M . For instance, we have

x : A, y : B ` 〈x, y〉 : A×B

and by exchange and weakening we can obtain also

y : B, z : C, x : A ` 〈x, y〉 : A×B.

with the same term 〈x, y〉. This does not contradict “terms are derivations”,
because we only require a term to determine a unique derivation when paired
with its context and consequent.

Remark 2.8.3. As remarked briefly at the beginning of the section, the admissi-
bility of the structural rules is central to having a clean theory of terms and a
clean proof of the initiality theorem. If we took the structural rules as primitive,
then to maintain “terms as derivations” we would have to include information
about the structural rules in terms, for instance annotating the derivation

A,B ` A A,B ` B
A,B ` A×B
B,A ` A×B

with a term like y : B, x : A ` σ∗〈x, y〉 : A × B, distinguishing it from the
different derivation

B,A ` B B,A ` A
B,A ` A×B

that we could write as y : B, x : A ` 〈x, y〉 : A×B. Clearly these two derivations
ought to have the same term. However, if structural rules are primitive, then
using the same term for both of them would break the “terms as derivations”
principle. If we did this, then to prove the initiality theorem using terms, after
inducting over derivations we would have to prove that the interpretation of a
term is independent of its derivation. This sort of thing is difficult and tedious,
and hence often left to the reader or left unmentioned altogether. Making the
structural rules admissible avoids both horns of the dilemma.

Now we need substitution. Since all our other rules maintain the same
context, it is natural to do the same here.

138 CHAPTER 2. SIMPLE TYPE THEORIES

x[M/x] = M

y[M/x] = y (y a variable 6= x)

f(N1, . . . , Nn)[M/x] = f(N1[M/x], . . . , Nn[M/x])

〈P,Q〉[M/x] = 〈P [M/x], Q[M/x]〉
π1(N)[M/x] = π1(N [M/x])

π2(N)[M/x] = π2(N [M/x])

∗[M/x] = ∗
match0(N)[M/x] = match0(N [M/x])

inl(N)[M/x] = inl(N [M/x])

inr(N)[M/x] = inr(N [M/x])

match+(N, u.P, v.Q)[M/x] = match+(N [M/x], u.P [M/x], v.Q[M/x])

(λy.N)[M/x] = λy.N [M/x]

(PQ)[M/x] = (P [M/x])(Q[M/x])

Figure 2.10: Substitution in simply typed λ-calculus

Lemma 2.8.4. Substitution is admissible in the simply typed λ-calculus: given
derivations of Γ `M : A and Γ, x : A ` N : B, we can construct a derivation of
Γ `M [N/x] : B.

Proof. By induction on the derivation of Γ, x : A ` N : B, as usual. There
are two mildly new features. Firstly, since the contexts are maintained rather
than split, we have to recurse into all premises of each rule. Secondly, when
we get down to id we might find a variable other than x, in which case there is
no substitution to do. Thus the clauses defining substitution are as shown in
Figure 2.10. As in §§2.4 and 2.5, to write substitution using terms, we need to
ensure by α-equivalence that the bound variables u, v in match+ and y in λ do
not appear free in M .

Note that the contraction rule is actually a special case of substitution, namely
the substitution of one variable for another. That is, given Γ, x : A, y : A `M : B,
we have Γ, x : A `M [x/y] : B which is (by induction, if you wish) equal to the
contraction of M obtained from Lemma 2.8.2.

The natural sort of “associativity” for this kind of substitution is also different:
it combines the “associativity and interchange” properties in one, since if a
variable y is free in N [M/x] then it might appear in both M and N .

Lemma 2.8.5. Given derivations of Γ ` M : A and Γ, x : A ` N : B and
Γ, x : A, y : B ` P : C, we have

P [N/y][M/x] = P [M/x][N [M/x]/y].

2.8. SIMPLY TYPED λ-CALCULUS 139

On the left-hand side, P [N/y][M/x] means (P [N/y])[M/x]. On the right-
hand side, when writing P [M/x] we have technically to apply weakening to M
(by Lemma 2.8.2) so that it has context Γ, y : B first.

Proof. A straightforward induction on derivations. For the “base cases” of
variables, we have

x[N/y][M/x] = x[M/x]

= M

= M [N [M/x]/y] (*)

= x[M/x][N [M/x]/y]

y[N/y][M/x] = N [M/x]

= y[N [M/x]/y]

= y[M/x][N [M/x]/y]

z[N/y][M/x] = z[M/x]

= z

= z[M/x]

= z[M/x][N [M/x]/y]

where z 6= x, y. The equality (*) is because y does not appear in M , i.e. M
has been obtained by weakening from a context not including y as remarked
above. (Formally, we ought to prove by a further induction that substituting for
a variable obtained by weakening never changes the term/derivation.)

We also need to know that substitution commutes with the other structural
rules. For weakening and exchange this is immediate from the observation that
these rules do not change the term. For contraction, it follows from Lemma 2.8.5
and the observation that contraction is a special case of substitution:

N [x/y][M/x] = N [M/x][x[M/x]/y] = N [M/x][M/y]. (2.8.6)

N [M/x][y/z] = N [y/z][M [y/z]/x] (2.8.7)

Now we can state the β- and η-conversion rules. Those for products and
coproducts are the familiar ones from Figure 2.6. The β-conversion rule for →:

(λx.M)N ≡M [N/x]

says that if we apply a function defined by λ-abstraction to an argument, the
result is what we get by “plugging in” the argument to the expression defining
the function. That is, if f(x) = x2 then f(3) = 32. The η-conversion rule says
that any function is a λ-abstraction:

M ≡ λx.Mx if M : A→ B

A straightforward induction shows that ≡ is a congruence not only for substitu-
tion, but also for the new admissible structural rules from Lemma 2.8.2.

140 CHAPTER 2. SIMPLE TYPE THEORIES

Now we are ready to prove the initiality theorem. Note that we generate
our free structure from a mere multigraph, not (as one might guess) a cartesian
multigraph. A cartesian multigraph contains operations and equations, so to
use it as base data we would need to incorporate those operations into ≡.

Theorem 2.8.8. The free cartesian closed category with coproducts generated
by a multigraph G can be presented by the simply typed λ-calculus under G: its
underlying cartesian multigraph is that constructed in Lemma 2.8.2 modulo ≡,
and its composition is given by substitution.

Proof. Although Lemmas 2.8.4 and 2.8.5 are not stated in the usual form of
multicategory composition operations, we can easily derive those operations
from them. Given Γ `M : A and ∆, x : A,Ψ ` N : B, we can apply weakening
and exchange to obtain ∆,Γ,Ψ ` M : A and ∆,Γ,Ψ, x : A ` N : B; then
Lemma 2.8.4 yields ∆,Γ,Ψ ` N [M/x] : B. Associativity and interchange are
the special cases of Lemma 2.8.5 where x does not occur in P and where x does
not occur in N , respectively, and the identity laws follow as usual. Thus to have
a cartesian multicategory it remains to check Definition 2.6.4(c) and (d), using
in particular (2.8.6) and (2.8.7). We leave this to the reader in Exercise 2.8.1; it
can be done directly or by way of Exercise 2.6.3.

The rules for all the type operations give this cartesian multicategory products,
coproducts, and closed structure; thus it underlies a cartesian closed category with
coproducts. Initiality follows as usual: given a map of multigraphs P : G →M,
where M is a cartesian closed category with coproducts, we extend P to all
types by induction, then define it on all derivations by induction, then check that
≡ is preserved by induction. As always, this works because the rules for type
operations (including the new one →) are defined to mirror those of categorical
universal properties.

Remark 2.8.9. Throughout this chapter, we have been taking the notion of
“finite list” as given externally: the context of a judgment is a finite list of types,
and we assume we know what a finite list means. However, it is also possible
to incorporate the definition of “finite list” into the type theory, by adding
a judgment for contexts alongside the judgment for types. The rules for this
judgment are:

` () ctx

` Γ ctx ` A type

` (Γ, A) ctx

In other words, there is an empty context, and from any context we can make a
new one by adding a type on the end. Similarly, instead of the “identity/variable”
rule having a condition (x : A) ∈ Γ (relying on our external knowledge of what
it means to “be an element of a finite list”), we can replace it by a judgment
“Γ ` x ⇓ A” meaning “x is a variable of type A in context Γ”, with rules

` Γ ctx ` A type

Γ, A ` pop ⇓ A
` Γ ctx ` A type Γ ` x ⇓ B

Γ, A ` shift(x) ⇓ B
Γ ` x ⇓ A

Γ ` use(x) : A

2.8. SIMPLY TYPED λ-CALCULUS 141

That is, there is a variable associated to the last type in a context, and variables
associated to other types in the context are defined inductively. Thus, for
example, the variables in the context A,B,C are

A,B,C ` pop ⇓ C
A,B ` pop ⇓ B

A,B,C ` shift(pop) ⇓ B

A ` pop ⇓ A
A,B ` shift(pop) ⇓ A

A,B,C ` shift(shift(pop)) ⇓ A

Note that modulo a change of notation, these “variables” are precisely de Bruijn
indices : the number of “shift”s says how many types we need to “count backwards”
from the right. At present this is merely a curiosity, but when we come to consider
dependent type theories in chapter 6 it will be much more important.

Exercises

Exercise 2.8.1. Complete the proof in Theorem 2.8.8 that type theory yields a
cartesian multicategory by checking Definition 2.6.4(c) and (d), or perhaps the
corresponding one-place axioms you found in Exercise 2.6.3.

Exercise 2.8.2.

(a) Write down terms in the simply typed λ-calculus (with → the only type
constructor) that have the following types (for arbitrary A,B,C):

A→ A

A→ B → A

(A→ B → C)→ (A→ B)→ (A→ C)

(Remember that the type operator → associates to the right: X → Y → Z
means X → (Y → Z).)

(b) By combinatory logic we will mean the type theory obtained from simply
typed λ-calculus by removing the λ-abstraction rule:

���
���

���XXXXXXXXX

Γ, x : A `M : B

Γ ` λx.M : A→ B

and instead adding axioms called I, K, and S having the above types (for
any A,B,C):

` A type

Γ ` IA : A→ A

` A type ` B type

Γ ` KAB : A→ B → A

` A type ` B type ` C type

Γ ` SABC : (A→ B → C)→ (A→ B)→ (A→ C)

142 CHAPTER 2. SIMPLE TYPE THEORIES

Prove that the removed λ-abstraction rule is admissible in CL. That is,
given a derivation in combinatory logic of Γ, x : A `M : B, we can construct
a derivation in combinatory logic of Γ ` [x]M : A→ B for some [x]M (note
that this is an operation on combinatory logic terms, like substitution).

(c) Write down some ≡-laws satisfied by the I, K, and S you defined in (a),
and show that when they are used as generators for an ≡ for combinatory
logic, it also presents a free closed cartesian multicategory. One way to
do this is by a direct induction on derivations; another way is exhibit a
bijection between its terms and those of the simply typed λ-calculus.

(d) Compare to Exercise 2.7.9.

2.9 Finite-product theories

Recall from §1.7 that for almost any type theory with an initiality theorem,
we can build a notion of a “presentation” or a “theory” that allows generating
morphisms with arbitrary types in their domains and codomains, as well as
generating equalities between arbitrary terms. We have not explicitly mentioned
this in the present chapter, but it is true for all of the type theories we have
considered.

For example, starting from the simply typed λ-calculus with products we
can define (→,×)-theory, which has a set G0 of objects, sets G1(A1, . . . , An;B)
of generating multimorphisms where Ai and B can be built up out of ×,1,→,
and a set of generating equations between terms defined from these. One such
generating morphism might have domain (A→ B,B ×B → A) and codomain
(A → C) × B. As in §1.7, we can show that the type theory of a (→,×)-
theory freely generates an (in this case) cartesian closed category, and that
every cartesian closed category is equivalent to that freely generated by its
underlying (→,×)-theory (its “internal logic”). Thus, if we define the morphisms
between (→,×)-theories in a sufficiently tautological way, we obtain a 2-category
biequivalent to that of cartesian closed categories. We can of course “mix and
match” the type operations assumed in our theories, by the modularity of type
theory (principle (∗)).

One particularly important case is when we start from the type theory of
§2.8 but with no type operations (that is, the type theory for plain cartesian
multicategories). Because we have morphisms in our generating multigraph
with arbitrary domains, we can still express “operations” of arbitrary finite
arity. The new thing relative to §2.8 is that we allow arbitrary generating
equations between terms. These are called finite-product theories or finitary
algebraic theories.

Finite-product theories solve the problem that we had with our unary finite-
product theories in §1.7 (which there we mostly called “×-presentations”) of
having to “pack and unpack” terms into ordered pairs in order to apply generators
(such as the multiplication of a monoid object) to them. For instance, the finite-
product theory for a monoid has:

2.9. FINITE-PRODUCT THEORIES 143

� One base type A;

� Two generating morphisms m ∈ G1(A,A;A) and e ∈ G1(();A); and

� The following axioms:

x : A, y : A, z : A ` m(x,m(y, z)) ≡ m(m(x, y), z) : A

x : A ` m(x, e) ≡ x : A y : A ` m(e, y) ≡ y : A

(As is common, since e is a 0-ary generator, we write just “e” instead of explicitly
giving it 0 arguments like “e()”.) In this formulation, the equational proof of
uniqueness of inverses from §0.1 finally makes sense as written. To be precise,
we assume additional generators i, j ∈ G1(A,A) and axioms

x : A ` m(x, i(x)) ≡ e : A x : A ` m(x, j(x)) ≡ e : A

x : A ` m(i(x), x) ≡ e : A x : A ` m(j(x), x) ≡ e : A.

If we write m(x, y) infix as x · y, then we can perform the computation exactly
as written:

x : A ` i(x) ≡ i(x) · e ≡ i(x) · (x · j(x)) ≡ (i(x) · x) · j(x) ≡ e · j(x) ≡ j(x) : A.

For emphasis, we remind the reader how this type-theoretic proof yields a
conclusion about arbitrary monoid objects in arbitrary categories with products.
Given a category with productsM, we first regard it as a cartesian multicategory.
Then the structure of a monoid object A corresponds to morphisms (A,A)→ A
and ()→ A in this cartesian multicategory, satisfying the appropriate axioms,
and similarly for inverse operators.

Now if G is the above finite-product theory, it generates the free cartesian
multicategory FCartMultiG containing a monoid object with two inverse opera-
tors. Its freeness implies there is a unique functor of cartesian multicategories
FCartMultiG →M taking the generating syntactic monoid to the given one in
M, and also its inverse operators. Finally, the above calculation shows that i
and j define equal morphisms in FCartMultiG; hence their images in M must
also be equal.

A similar argument, of course, works for any finite-product theory. In general,
finite-product theories can describe algebraic structures with operations and
equational axioms, such as monoids, groups, rings, modules, and so on. All
such structures can be “internalized” in any category with finite products. They
cannot describe structures whose operations or axioms involve conditions, such
as categories (we can only compose two morphisms if the source of one must
equal the target of the other) or fields (we can only invert an element if it is
nonzero), or whose axioms involve more complicated logical operations such as
“or” or “there exists”. Structures of this sort can also be internalized, but only in
a category with more structure; we will return to them in chapter 4.

Note that we actually obtained a more general result about monoid objects
in cartesian multicategories, not just categories with products, because our free

144 CHAPTER 2. SIMPLE TYPE THEORIES

object FCartMultiG is a cartesian multicategory rather than a category with
products. However, for some purposes, we might also want to have a free category
with products generated by a theory. This is easy to obtain: simply consider the
same generators of the theory but add the ×,1 type operations; then the result
is a free cartesian multicategory with products, hence a free category with finite
products.

If we only care about a universal property up to equivalence, there is an even
simpler way to obtain a free category with products: we can apply the following
functor.

Lemma 2.9.1. The forgetful functor U from categories with products to cartesian
multicategories has a left pseudo-adjoint. That is, for any cartesian multicategory
C there is a category with products FC and a pseudonatural equivalence of hom-
categories CartMulti(C, UM) ' PrCat(FC,M) for any category M with
products.

Proof. Let the objects of FC be finite lists of objects of C, and let the morphisms
(A1, . . . , An) → (B1, . . . , Bm) be finite lists (f1, . . . , fm) of morphisms in C
where fi : (A1, . . . , An) → Bi. The cartesian product in FC is obtained by
concatenation of lists. We leave the rest to the reader.

If we apply this left adjoint F to the free cartesian multicategory generated
by a finite-product theory G, we obtain a category with products whose objects
are the contexts in the type theory of G, and whose morphisms are tuples of
terms. For this reason it is often called the category of contexts of G; up to
equivalence, it is the free category with products generated by G. When G has
exactly one type, say A, the objects of its category of contexts are just lists
(A,A, . . . , A) uniquely determined by their length, and so they can be identified
with natural numbers. In this case, the category of contexts is known as the
Lawvere theory [Law63] corresponding to G (recall from §1.7.4 that some
categorical logicians use the word “theory” to refer to the categorical structure
presented by a type theory).

The category of contexts of a type theory, like the free cartesian multicategory
it generates, can be said to contain the “extensional essence” of that theory. In
particular, the category of contexts of G uniquely determines, up to equivalence,
the category of morphisms of theories from G into any category with products
(such morphisms are often called models of the theory). As mentioned in §1.7.4,
two theories that generate equivalent categories of contexts have “the same
models” in all categories, and are said to be Morita equivalent. For instance,
the notion of group can be presented with a multiplication, unit, and inverse,
or with a unit and “division” operation; these are distinct theories but are
Morita equivalent. (The study of finite-product theories, particularly those with
only one type, is also known as universal algebra; although classical universal
algebraists mainly study models in Set rather than more general categories.)

Remark 2.9.2. This seems an appropriate place to mention an alternative ap-
proach to terms in type theory that is fairly common, especially for finite-product
theories. Rather than giving rules that inductively generate judgments (with

2.10. SYMMETRIC MONOIDAL CATEGORIES 145

contexts) and then assigning terms to represent them uniquely with variables
associated to the types in the context, some authors instead suppose given from
the start a different collection of “variables” associated to each type. Then
the terms (without contexts) are defined inductively by applying generating
morphisms to variables of appropriate types, and finally a “valid context for a
term” is defined to be any list of variables (with their associated types) that
includes all the variables appearing (freely) in the term. The end result is much
the same, but our way of keeping track of the context all the way through
matches the category theory better (since every morphism in a category has a
specified domain) and makes for cleaner inductive arguments.

Exercises

Exercise 2.9.1. Re-do Exercises 1.7.3 and 1.7.4 using finite-product theories.
Notice how much nicer they are.

Exercise 2.9.2. Let G be a (non-unary) ×,1-theory, i.e. a multicategorical theory
whose only type operations are ×,1, but whose generating morphisms can involve
×,1 in their domains and codomains, and with generating equalities. Show that
there is another ×-theory H whose generating arrows contain only base types in
their domains and codomains and such that FPrCatG ' FPrCatH.

Exercise 2.9.3. Prove directly that the category of contexts of a type theory has
a universal property up to equivalence, without going through Lemma 2.9.1.

2.10 Symmetric monoidal categories

Now we consider a type theory for symmetric monoidal categories. That is,
we add the exchange rule (and the (rules) to §2.5, or remove weakening and
contraction from §2.8. As always we want exchange to be admissible, but we
cannot use the same trick for this that we did in §2.8, because in the absence
of weakening the identity rule must be x : A ` x : A rather than containing a
whole context on the left.

Thus, we cannot expect to push all structural rules up to the top. Instead
we need to build them into the other rules. For instance, in the theory of §2.7
we can derive B,A ` A⊗B by using primitive exchange:

A ` A B ` B
A,B ` A⊗B
B,A ` A⊗B

To obtain this without primitive exchange, we must incorporate some exchange
into the ⊗I rule. That is, it must say something like

Γ ` A ∆ ` B Γ,∆ ∼= Φ

Φ ` A⊗B

146 CHAPTER 2. SIMPLE TYPE THEORIES

allowing us to permute the concatenated context Γ,∆ of the premises to obtain
the context of the conclusion.

However, this is not quite right yet: it introduces too much redundancy. For
instance, with this rule we would have the following derivation of A,B,C `
A⊗ (B ⊗ C):

A ` B
B ` B C ` C B,C ∼= C,B

C,B ` B ⊗ C A,C,B ∼= A,B,C

A,B,C ` A⊗ (B ⊗ C)

which would be distinct from the obvious one:

A ` B
B ` B C ` C B,C ∼= B,C

B,C ` B ⊗ C A,B,C ∼= A,B,C

A,B,C ` A⊗ (B ⊗ C)

This is not what we want; both clearly represent the same morphism in a
symmetric multicategory, and moreover both are naturally represented by the
same term x : A, y : B, z : C ` x, y, z¡¡ : A⊗ (B ⊗ C). What we need to do is
incorporate “just enough” exchange to obtain any desired ordering of the context
of the conclusion, but without introducing redundancy.

The redundancy comes from the fact that the contexts of the premises must
already be free to occur in any order. Thus, we don’t want to re-build-in
permutations of those, only permutations that alter the relative order between
the contexts of different premises. Formally, what we need is a shuffle.

Definition 2.10.1. For p1, . . . , pn ∈ N, a (p1, . . . , pn)-shuffle is a permutation
of
⊔n
i=1{1, . . . , pi} with the property that it leaves invariant the internal ordering

of each summand.

For instance, if we write {1, 2} t {1, 2, 3} as {1, 2, 1′, 2′, 3′}, then here are
some (2, 3)-shuffles:

121′2′3′ 11′2′23′ 1′2′13′2 1′12′3′2

In all cases 1 comes before 2, and also 1′ comes before 2′ which comes before
3′. The name “shuffle”, of course, comes from the fact that when n = 2 this is
exactly the sort of permutation that can be obtained by cutting a deck of p+ q
cards into a p-stack and a q-stack and riffle-shuffling them together.

Now let Sp denote the symmetric group on p elements; thus the (p1, . . . , pn)-
shuffles are elements of Sp1+···+pn . Note that they are not a subgroup. However,
we do have a (non-normal) inclusion Sp1 × · · · × Spn ↪→ Sp1+···+pn given by the
block sum of permutations, acting on

⊔n
i=1{1, . . . , pi} by permuting each

summand individually. The following is straightforward to verify.

Lemma 2.10.2. Every coset of Sp1 × · · · × Spn in Sp1+···+pn contains exactly
one (p1, . . . , pn)-shuffle. Thus, every permutation of p1 + · · ·+ pn can be written
uniquely as the product of a block sum from Sp1 × · · · × Spn and a (p1, . . . , pn)-
shuffle.

2.10. SYMMETRIC MONOIDAL CATEGORIES 147

If Γi is a context of length pi for i = 1, . . . , n, then we write Shuf(Γ1, . . . ,Γn; Ψ)
for the set of (p1, . . . , pn)-shuffles that act on the concatenated context Γ1, . . . ,Γn
to produce the context Ψ. When using named variables, we assume that the
variable names are preserved by this action (which means that the contexts
Γ1, . . . ,Γn and Ψ uniquely determine such a shuffle if it exists). Now we can
state a better version of ⊗I:

Γ ` A ∆ ` B σ ∈ Shuf(Γ,∆; Φ)

Φ ` A⊗B

This allows deriving B,A ` A ⊗ B, but rules out the undesired redundant
derivation above, since the permutation A,C,B ∼= A,B,C is not a (1, 2)-shuffle.
We can treat all the other rules from §2.5 (and also the (rules) similarly,
moving the active types in the context to the far right as we did in §2.8; the
result is shown in Figure 2.11.

Lemma 2.10.3. Exchange is admissible in this type theory: if we have a
derivation of Γ ` A, and a permutation Γ ∼= ∆ rearranging Γ to ∆, then we can
construct a derivation of ∆ ` A. Moreover, this operation is a group action.

Proof. We induct on the given derivation of Γ ` A, and most of the cases are
essentially the same. Consider ⊗I: given its premises and a permutation Φ ∼= Φ′,
we decompose the composite permutation Γ,∆ ∼= Φ ∼= Φ′ uniquely as the block
sum of two permutations Γ ∼= Γ′ and ∆ ∼= ∆′ with a shuffle Γ′,∆′ ∼= Φ′. Now by
the inductive hypothesis we can derive Γ′ ` A and ∆′ ` B, whence applying ⊗I
again with the shuffle (Γ′,∆′) ∼= Φ′ we get Φ′ ` A⊗B. All the other cases can
be treated similarly.

We likewise show that it is a group action by induction. In the case of ⊗I, if
we have Φ ∼= Φ′ ∼= Φ′′, we decompose (Γ,∆) ∼= Φ ∼= Φ′ as (Γ,∆) ∼= (Γ′,∆′) ∼= Φ′;
then we decompose (Γ′,∆′) ∼= Φ′ ∼= Φ′′ as (Γ′,∆′) ∼= (Γ′′,∆′′) ∼= Φ′′. But since
composition of permutations is associative, this is the same as decomposing
(Γ,∆) ∼= Φ ∼= Φ′′ as (Γ,∆) ∼= (Γ′′,∆′′) ∼= Φ′′ directly. We conclude by applying
the inductive hypothesis to the actions of Γ ∼= Γ′ ∼= Γ′′ and ∆ ∼= ∆′ ∼= ∆′′ on the
premises.

Note that the shuffles appearing in the premises are not notated explicitly in
the terms! Nevertheless, terms still uniquely determine derivations, because we
can inspect the order that the variables appear in a term. As in §2.5 we need
“superlinearity” first.

Lemma 2.10.4. If Γ `M : A is derivable, then every variable in Γ appears at
least once (free) in M .

Proof. An easy induction just like Lemma 2.5.1. Note that we again had to
include the unused variables in 1I and 0E for this purpose.

Lemma 2.10.5. If Γ `M : A is derivable, then it has a unique derivation.

148 CHAPTER 2. SIMPLE TYPE THEORIES

` A type

x : A ` x : A
id

f ∈ G(A1, . . . , An;B)
Γ1 `M1 : A1 . . . Γn `Mn : An Shuf(Γ1, . . .Γn; Φ)

Φ ` f(M1, . . . ,Mn) : B
fI

Γ `M : A ∆ ` N : B Shuf(Γ,∆; Φ)

Φ ` M,N ¡ : A⊗B
⊗I

Ψ `M : A⊗B Γ, x : A, y : B ` N : C Shuf(Γ,Ψ; Φ)

Φ ` matchA⊗B(M,xy.N) : C
⊗E

() ` ? : 1
1I

Ψ `M : 1 Γ ` N : C Shuf(Γ,Ψ; Φ)

Φ ` match1(M,N) : C
1E

Γ `M : A Γ ` N : B

Γ ` 〈M,N〉 : A×B
×I

Γ `M : A×B
Γ ` πA,B1 (M) : A

×E1

Γ `M : A×B
Γ ` πA,B2 (M) : B

×E2

x1 : A1, . . . , xn : An ` ∗(x1, . . . , xn) : 1
1I

Ψ `M : 0 Shuf(Γ,Ψ; Φ)

Φ ` matchΓ
0(M) : C

0E

Γ `M : A

Γ ` inl(M) : A+B
+I1

Γ ` N : B

Γ ` inr(N) : A+B
+I2

Ψ `M : A+B Γ, u : A ` P : C Γ, v : B ` Q : C Shuf(Γ,Ψ; Φ)

Φ ` matchA+B(M,u.P, v.Q) : C
+E

Γ, x : A `M : B

Γ ` λx.M : A(B
(I

Γ `M : A→ B ∆ ` N : A Shuf(Γ,∆; Φ)

Φ `MN : B
(E

Figure 2.11: Type theory for symmetric monoidal categories

2.10. SYMMETRIC MONOIDAL CATEGORIES 149

Proof. By induction on derivations. Clearly the structure of a term determines
the rule that must have been applied to produce it, so the question is whether
it determines the premises uniquely as well. The interesting cases are the rules
that involve shuffles: fI,⊗I,⊗E,1E,0E,+E.

Consider ⊗I: looking at the conclusion Φ ` M,N ¡ : A⊗B, the rule ensures
that each variable in Φ can only occur in one of M or N , and by Lemma 2.10.4
it must appear in exactly one of them. Thus, it must be that Γ consists of
those variables occurring in M while ∆ consists of those variables occurring in
N . Moreover, since the shuffle Shuf(Γ,∆; Ψ) cannot alter the relative order of
variables in Γ and ∆, it must be that the variables in Γ and ∆ occur in the same
order as they do in Ψ. Thus the premises Γ `M : A and ∆ ` N : B are uniquly
determined, and once Γ and ∆ are fixed the shuffle is also uniquely determined.
All the other rules involving shuffles behave similarly.

From this point onwards the theory looks almost exactly like that of §2.5:
substitution is admissible, we define β- and η-conversion rules, and construct a
free closed symmetric monoidal category with products and coproducts (or less,
by omitting some of our type operations). We leave the details to the reader
(Exercise 2.10.1).

In particular, because we have ensured that terms uniquely represent deriva-
tions, we can prove the initiality theorem as usual by a simple induction over
derivations. To the author’s knowledge the use of shuffles for this purpose
is an improvement over the existing literature: it produces a free symmetric
multicategory using nice-looking terms while still maintaining the “terms are
derivations” principle, so that we can prove the initiality theorem without incur-
ring the (rarely-satisfied) obligation to prove that definitions by induction over
derivations depend only on the term.

One sometimes also finds remarks that the context in a linear type theory
can be treated as a “finite multiset” (a “set that can contain some elements
more than once”). Whether this is true depends on what exactly one means by
a multiset. On one hand, if a multiset just means a set with a (finite) positive
“count” labeling each element, then this is true for posetal linear logic as in §2.7,
but not when we want to present non-posetal symmetric monoidal categories,
since it doesn’t allow us to distinguish between x : A, y : A ` x, y¡ : A ⊗ A
and x : A, y : A ` y, x¡ : A⊗ A. On the other hand, if a multiset means a set
with a (finite) nonempty set of “occurrences” labeling each element, then the
occurrences play essentially the same role as named variables. This suggests
a type theory corresponding somehow to the “fat symmetric multicategories”
of [Lei04, Appendix A]; but we will not pursue this further.

Finally, we can enhance the present theory as in §1.7 to allow generating
morphisms with arbitrary types in their domains and codomains as well as
arbitrary generating equalities relating pairs of terms. If we omit all type
operations (so that we have a theory only of symmetric multicategories) but
allow arbitrary generating equalities, then we obtain what might be called linear
finitary algebraic theories: a set of types, a set of operations with finite arities
and types, and a set of axioms about the the composites of those operations

150 CHAPTER 2. SIMPLE TYPE THEORIES

such that “each variable appears exactly once on both sides of each axiom”. For
instance, the theory of monoids is linear, with the axioms:

x : A, y : A, z : A ` x · (y · z) ≡ (x · y) · z : A

x : A ` x · e ≡ x : A

x : A ` e · x ≡ x : A

but the theory of groups, which adds a unary operation i and the axioms

x : A ` x · i(x) ≡ e : A

x : A ` i(x) · x ≡ e : A

is not. Note that formally, we do not have to give a precise meaning to “each
variable appears exactly once on both sides of each axiom”; instead the terms
that can appear in axioms are defined inductively by rules that happen to ensure
that this condition holds.

If G is a linear finitary algebraic theory, then of course it generates a free
symmetric multicategory FSymMultiG whose objects are precisely the (base)
types of G. In particular, if G has one type, then FSymMultiG has one object.
A (symmetric) multicategory with one object is called an operad (enriched
in Set— though much of the interest of operads lies in operads enriched in
other categories); they were originally defined by [May72], and the terminology
has since been much generalized [Lei04]. (Indeed, arbitrary multicategories are
sometimes called “colored operads”.)

On the other hand, there are cases where we want to allow tensor products
in the codomain. For instance, the theory of bimonoids would have one type A,
four generating morphisms

m : (A,A)→ A e : ()→ A 4 : A→ A⊗A ε : A→ 1

and the axioms shown in Figure 2.12.

Exercises

Exercise 2.10.1. Finish the theory of this section: prove the admissibility of
substitution, state the β- and η-conversion rules, and prove the initiality theorem.

Exercise 2.10.2. Another approach to linear type theory is to annotate some
types in the context with an “unused” marker such as (−)0, and allow weakening
of “unused” types. Thus we could have for instance x : A0, y : B, z : C0 ` y : B,
since x and z are marked as unused. Two of these contexts Γ and ∆ can be
merged if they contain the same types in the same order, and each type is used
(the opposite of unused) in at most one of them; in that case they merge to a
context Γ�∆ containing the same types again, with those used that are used in
either Γ or ∆. For instance, (A0, B, C0)� (A,B0, C0) = (A,B,C0).

(a) Formulate a type theory containing ⊗,×,+,(using contexts with usage
markers and merging rather than concatenation. For instance, the rule ⊗I

2.10. SYMMETRIC MONOIDAL CATEGORIES 151

x : A, y : A, z : A ` x · (y · z) ≡ (x · y) · z : A

x : A ` x · e ≡ x : A

x : A ` e · x ≡ x : A

x : A ` match⊗(4(x), uv. u,4(v)¡)

≡ match⊗(4(x), uv.match⊗(4(u), wz. w, z, v¡¡)

: A⊗ (A⊗A)

x : A ` match⊗(4(x), uv.match1(ε(u), v)) ≡ x : A

x : A ` match⊗(4(x), uv.match1(ε(v), u)) ≡ x : A

x : A, y : A ` match⊗(4(x), uv,match⊗(4(y), wz. m(u,w),m(v, z)¡))

≡ 4(m(x, y)) : A⊗A
x : A, y : A ` ε(m(x, y)) ≡ match1(ε(x),match1(ε(y), ?)) : 1

() ` 4(e) ≡ e, e¡ : A⊗A
() ` ε(e) ≡ ? : 1

Figure 2.12: Axioms for a bimonoid

should be
Γ `M : A ∆ ` N : B

Γ�∆ ` M,N ¡ : A⊗B.

Prove that exchange, and weakening for unused types, are admissible and
functorial, by pushing them up the entire derivation as we did in the
cartesian case in §2.8.

(b) Define a corresponding multicategory-like structure whose domains are
lists with usage markers, and establish a correspondence of some sort with
symmetric monoidal categories.

(c) Prove an initiality theorem.

Exercise 2.10.3. Is it possible to formulate a theory for semicartesian or relevance
monoidal categories in which the appropriate structural rules are admissible?

Collected Exercises

For convenient reference, we collect the exercises from all sections in this chapter.

Exercise 2.2.1. Prove that the definitions of multicategory in terms of multi-
composition and one-place composition are equivalent, in the strong sense that
they yield isomorphic categories of multicategories.

Exercise 2.2.2. Fill in the details in the proof of Theorem 2.2.4.

152 CHAPTER 2. SIMPLE TYPE THEORIES

Exercise 2.2.3. Show that the category whose objects are representable mul-
ticategories but whose morphisms are arbitrary functors of multicategories is
equivalent to the category of monoidal categories and lax monoidal functors.

Exercise 2.2.4. Show that the category of representable multicategories and
functors that “preserve tensor products”, in the sense that if χ : (A1, . . . , An)→⊗

iAi is a tensor product then F (χ) is also a tensor product, is equivalent to
the category of monoidal categories and strong monoidal functors.

Exercise 2.2.5. Fill in the details in the proof of Theorem 2.2.6.

Exercise 2.3.1. Prove the well-formedness, cut-admissibility, and initiality
theorems for the natural deduction for monoidal posets.

Exercise 2.3.2. Prove that the rules ⊗L and 1L in the sequent calculus for
monoidal posets are invertible in the sense of Exercise 1.3.3: whenever we have
a derivation of their conclusions, we also have derivations of their premises.

Exercise 2.3.3. Write down either a sequent calculus or a natural deduction for
monoidal posets that are also meet-semilattices, and prove its initiality theorem.

Exercise 2.3.4. Let us augment the sequent calculus for monoidal posets by
the following versions of the rules for join-semilattices:

` A type ` B type

` A ∨B type ` ⊥ type

Γ ` A
Γ ` A ∨B

Γ ` B
Γ ` A ∨B

Γ, A,∆ ` C Γ, B,∆ ` C
Γ, A ∨B,∆ ` C Γ,⊥,∆ ` C

(a) Construct derivations in this calculus of the following sequents:

(A⊗B) ∨ (A⊗ C) ` A⊗ (B ∨ C)

A⊗ (B ∨ C) ` (A⊗B) ∨ (A⊗ C)

(b) Prove that this sequent calculus constructs the initial distributive monoidal
poset (see Theorem 2.2.6).

Exercise 2.4.1. Our proof of Theorem 2.4.10 relied on the fact that monoidal
categories are equivalent to representable multicategories, which we sketched
but did not prove carefully. If we don’t assume this fact, then our proof of
Theorem 2.4.10 is actually just about free representable multicategories. Using
this version of the theorem, prove using type theory that any representable
multicategory is monoidal: that is, its tensor product is coherently associative
and unital.

Exercise 2.4.2. Formulate and prove the admissibility of a “multi-substitution”
rule like Theorem 2.3.2 for the type theories considered in this section.

Exercise 2.4.3. The annotation Γ|∆ on match
Γ|∆
A⊗B is something that appears

only in the non-symmetric case, so we encourage the reader not to worry overmuch
about it. However, for the reader who nevertheless insists on worrying, here is
some extra reassurance.

2.10. SYMMETRIC MONOIDAL CATEGORIES 153

(a) We noted in Lemma 2.4.8 that this annotation on match
Γ|∆
A⊗B(M,xy.N)

is only necessary if M contains no variables. To see that it can actually
matter in that case, find an example of two distinct derivations whose
corresponding terms differ only in their annotations Γ|∆.

(b) Prove that any two terms as in (a) are related by ≡.

Exercise 2.4.4. Describe precisely what has to happen to de-Bruijn-style
variables when concatenating contexts, and formulate the rules for the type
theories of this section using de Bruijn variables.

Exercise 2.5.1. Find an example of a distributive monoidal category with
products in which the two terms in (2.5.3) represent distinct morphisms.

Exercise 2.6.1. Fill in the details in the proof of Theorems 2.6.5 to 2.6.7.

Exercise 2.6.2. Let S be a faithful cartesian club.

(a) Prove that if S contains the transposition {1, 2} ∼−→ {1, 2}, then it contains
all bijections.

(b) Prove that if S contains the transposition {1, 2} ∼−→ {1, 2} and also the
injection ∅ → {1}, then it contains all injections.

(c) Prove that if S contains the transposition {1, 2} ∼−→ {1, 2} and also the
surjection {1, 2} → {1}, then it contains all surjections.

Exercise 2.6.3. Define one-place versions of S-multicategories and show that
they are equivalent to the multi-composition version defined in the text.

Exercise 2.6.4. Show that representable cartesian multicategories with coprod-
ucts are equivalent to distributive categories.

Exercise 2.6.5. Of course, for any S a functor between S-multicategories is
required to preserve the σ-actions. Prove that:

(a) Any functor between semicartesian multicategories must preserve unit
objects / terminal objects.

(b) Any functor between cartesian multicategories must preserve tensor products
/ cartesian products.

Exercise 2.6.6. Define a notion of relevance monoidal category, by adding
“natural diagonals” to a symmetric monoidal category, and show that such
monoidal categories are equivalent to representable relevance multicategories.
(See [DP07].)

Exercise 2.6.7. Define a notion of faithful cocartesian club and a corre-
sponding notion of generalized multicategory that includes cocartesian monoidal
categories as the maximal case.

Exercise 2.7.1. Prove Theorems 2.6.6 and 2.6.7 using our posetal type theories.
Specifically:

154 CHAPTER 2. SIMPLE TYPE THEORIES

(a) If we have exchange and weakening, prove that 1 ∼= >.

(b) If we have exchange, weakening, and contraction, prove that A⊗B ∼= A×B.

Exercise 2.7.2. Prove that ¬¬(P ∨ ¬P) is an intuitionistic tautology, i.e.
construct a derivation of () ` ¬¬(P ∨ ¬P) in the natural deduction for Heyting
algebras.

Exercise 2.7.3. Prove that the following are equivalent for a Heyting algebra:

(a) The law of excluded middle P ∨ ¬P is true, i.e. P ∨ ¬P is the top element
for all P .

(b) The law of double negation ¬¬P ⇒ P is true.

(c) The Heyting algebra is a Boolean algebra, i.e. every element P has a
“complement” P such that P ∧ P = ⊥ and P ∨ P = >.

Exercise 2.7.4. Of the four “de Morgan’s laws”, three are intuitionistic tau-
tologies and one is not. Construct derivations of three of the following sequents
in the natural deduction for Heyting algebras:

¬(P ∨Q) ` ¬P ∧ ¬Q
¬(P ∧Q) ` ¬P ∨ ¬Q
¬P ∧ ¬Q ` ¬(P ∨Q)

¬P ∨ ¬Q ` ¬(P ∧Q)

Exercise 2.7.5. A frame is a lattice with infinitary joins satisfying the infinite
distributive law A ∧ (

∨
iBi)

∼=
∨
i(A ∧Bi).

(a) Prove that any (small) frame is a Heyting algebra.

(b) Prove that the lattice of open sets of any topological space is a frame.

(c) Describe a type theory for frames. This is called (propositional) geometric
logic.

Exercise 2.7.6. Give concrete examples of Heyting algebras satisfying the
following:

(a) There is an element P for which P ∨ ¬P is not the top element.

(b) There are elements P and Q for which the fourth de Morgan’s law (see
Exercise 2.7.4) does not hold.

Exercise 2.7.7. Describe a concrete example of a closed relevance monoidal
lattice containing two objects A and B such that there is no morphism from
1 (the unit object) to A((B (A). Deduce that () ` A((B (A) is not
derivable in the type theory for closed relevance monoidal lattices.

2.10. SYMMETRIC MONOIDAL CATEGORIES 155

Exercise 2.7.8. One of the advantages of sequent calculus over natural deduc-
tion is that because all of its rules introduce operations on the left or the right,
it is easier to conclude underivability theorems.

(a) Define a sequent calculus for closed S-monoidal lattices, and prove the cut
admissibility and initiality theorems.

(b) Prove that () ` A((B(A) is not derivable in the sequent calculus for
closed relevance monoidal lattices, by ruling out all possible ways that such
a derivation could end.

Exercise 2.7.9. Another way of deriving tautologies is called a Hilbert system.
A Hilbert system can be formulated as a sort of type theory where the judgments
all have empty context, i.e. are of the form ` A where A is a propositional
formula. Instead of the “modular” left/right rules of sequent calculus or the
introduction/elimination rules of natural deduction, where the rules for each
connective do not refer to any other connective, a Hilbert system gives a special
place to implication ⇒. The only rule with premises5 is the empty-context form
of ⇒E, modus ponens:

` A⇒ B ` A
` B

The behavior of all other connectives is specified by axioms (rules with no
premises, other than the well-formedness of the formulas appearing in them).
For instance, we complete the description of ⇒ with the following axioms:

` A type

` A⇒ A

` A type ` B type

` A⇒ (B → A)

` A type ` B type ` C type

` (A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))

The axioms for the remaining connectives are (omitting the obvious premises
and the `):

A⇒ (B ⇒ (A ∧B)) (A ∧B)⇒ A (A ∧B)⇒ B

A⇒ (A ∨B) B ⇒ (A ∨B) (A⇒ C)⇒ ((B ⇒ C)⇒ ((A ∨B)⇒ C))

A⇒ > ⊥ ⇒ A

Prove that this Hilbert system derives exactly the same tautologies as the natural
deduction for Heyting algebras.

(The main reasons for using a Hilbert system seem to be that it never
changes the context and has very few rules. This sometimes makes metatheoretic
arguments easier, but at the cost of greater distance from informal mathematics,

5Hilbert systems for more complicated logics have one or two more rules with premises, but
in general there are very few.

156 CHAPTER 2. SIMPLE TYPE THEORIES

since as we have remarked the latter gives a central place to hypothetical
reasoning. It should also be noted that the symbol ` is often used differently in
the context of Hilbert systems; rather than ` being part of each judgment, the
notation “Γ ` A” means that we can derive A (that is, ` A in our notation) in
the Hilbert system augmented by all the formulas in Γ as additional axioms.)

Exercise 2.7.10. Is there a well-behaved type theory (i.e. having admissible
cut and an initiality theorem) corresponding to the (posetal version of the)
“cocartesian multicategories” of Exercise 2.6.7? (As of this writing, the answer is
not known to the author.)

Exercise 2.8.1. Complete the proof in Theorem 2.8.8 that type theory yields
a cartesian multicategory by checking Definition 2.6.4(c) and (d), or perhaps
the corresponding one-place axioms you found in Exercise 2.6.3.

Exercise 2.8.2.

(a) Write down terms in the simply typed λ-calculus (with → the only type
constructor) that have the following types (for arbitrary A,B,C):

A→ A

A→ B → A

(A→ B → C)→ (A→ B)→ (A→ C)

(Remember that the type operator → associates to the right: X → Y → Z
means X → (Y → Z).)

(b) By combinatory logic we will mean the type theory obtained from simply
typed λ-calculus by removing the λ-abstraction rule:

���
���

���XXXXXXXXX

Γ, x : A `M : B

Γ ` λx.M : A→ B

and instead adding axioms called I, K, and S having the above types (for
any A,B,C):

` A type

Γ ` IA : A→ A

` A type ` B type

Γ ` KAB : A→ B → A

` A type ` B type ` C type

Γ ` SABC : (A→ B → C)→ (A→ B)→ (A→ C)

Prove that the removed λ-abstraction rule is admissible in CL. That is,
given a derivation in combinatory logic of Γ, x : A `M : B, we can construct
a derivation in combinatory logic of Γ ` [x]M : A→ B for some [x]M (note
that this is an operation on combinatory logic terms, like substitution).

(c) Write down some ≡-laws satisfied by the I, K, and S you defined in (a),
and show that when they are used as generators for an ≡ for combinatory

2.10. SYMMETRIC MONOIDAL CATEGORIES 157

logic, it also presents a free closed cartesian multicategory. One way to
do this is by a direct induction on derivations; another way is exhibit a
bijection between its terms and those of the simply typed λ-calculus.

(d) Compare to Exercise 2.7.9.

Exercise 2.9.1. Re-do Exercises 1.7.3 and 1.7.4 using finite-product theories.
Notice how much nicer they are.

Exercise 2.9.2. Let G be a (non-unary) ×,1-theory, i.e. a multicategorical
theory whose only type operations are ×,1, but whose generating morphisms
can involve ×,1 in their domains and codomains, and with generating equalities.
Show that there is another ×-theory H whose generating arrows contain only
base types in their domains and codomains and such that FPrCatG ' FPrCatH.

Exercise 2.9.3. Prove directly that the category of contexts of a type theory
has a universal property up to equivalence, without going through Lemma 2.9.1.

Exercise 2.10.1. Finish the theory of this section: prove the admissibility of
substitution, state the β- and η-conversion rules, and prove the initiality theorem.

Exercise 2.10.2. Another approach to linear type theory is to annotate some
types in the context with an “unused” marker such as (−)0, and allow weakening
of “unused” types. Thus we could have for instance x : A0, y : B, z : C0 ` y : B,
since x and z are marked as unused. Two of these contexts Γ and ∆ can be
merged if they contain the same types in the same order, and each type is used
(the opposite of unused) in at most one of them; in that case they merge to a
context Γ�∆ containing the same types again, with those used that are used in
either Γ or ∆. For instance, (A0, B,C0)� (A,B0, C0) = (A,B,C0).

(a) Formulate a type theory containing ⊗,×,+,(using contexts with usage
markers and merging rather than concatenation. For instance, the rule ⊗I
should be

Γ `M : A ∆ ` N : B

Γ�∆ ` M,N ¡ : A⊗B.

Prove that exchange, and weakening for unused types, are admissible and
functorial, by pushing them up the entire derivation as we did in the
cartesian case in §2.8.

(b) Define a corresponding multicategory-like structure whose domains are
lists with usage markers, and establish a correspondence of some sort with
symmetric monoidal categories.

(c) Prove an initiality theorem.

Exercise 2.10.3. Is it possible to formulate a theory for semicartesian or
relevance monoidal categories in which the appropriate structural rules are
admissible?

154 CHAPTER 2. SIMPLE TYPE THEORIES

Chapter 4

First-order logic

4.1 Predicate logic

In §2.7 we saw that the posetal reduction of a simple type theory can be regarded
as a deductive system for logic (intuitionistic, linear, relevant, classical, etc.
depending on the type theory). However, these logics are only propositional,
lacking variables and the ability to quantify over them with statements such
as “for all x” or “there exists an x such that”. Similarly, in §2.9 we saw that
simple type theory is adequate to express finite-product theories such as groups
and rings, but not more complicated theories such as categories or fields. The
solution to both of these problems is the same: we combine two type theories,
one representing the objects (like a finite-product theory) and one representing
the logic in which we speak about those objects.

The types in the second type theory, which we will henceforth call proposi-
tions instead of types to avoid confusion, will be dependent on the types in the
first type theory (which we sometimes call the base type theory). This means
that terms belonging to types can appear in propositions. More formally, it
means that unlike the judgment ` A type for types (in the base type theory),
the judgment for propositions has a context of types, so we write it Γ ` ϕ prop.
We will have rules such as

Γ `M : A Γ ` N : A

Γ ` (M =A N) prop

allowing the logic (the type theory of propositions) to “talk about” equality
of terms (morphisms between types). Finally, since propositions depend on a
context of types, their morphism judgment (which we also call entailment)
must also depend on such a context. Thus it has two contexts, one of types and
one of propositions, which we separate with a vertical bar: Γ | Θ ` ϕ.

In this section, we will describe and study type theories of this sort, with one
simple type theory dependent on another simple type theory. Unlike the type
theories considered in chapter 2, which were directly motivated by a corresponding

155

156 CHAPTER 4. FIRST-ORDER LOGIC

categorical structure, in the present case it seems more natural to describe the
type theory first and then define an appropriate categorical structure in order
to match it. (This is not to say that there are not lots of naturally occurring
examples of this categorical structure; there are! It’s just that without the type
theory in mind, we might not be led to define and study that exact class of
categorical structures.) Thus, we postpone consideration of their categorical
semantics to §§4.2 and 4.3.

We will also make several simplifying assumptions in this section. Firstly, the
base type theory will always be a bare theory of cartesian multicategories under
some multigraph, with no type operations and no axioms. The lack of axioms
is not much of a problem, since once we have equality propositions we can use
those instead. The lack of type operations is a temporary simplification, but
identifies our current subject as first-order logic; in chapter 5 on “higher-order
logic” we will reintroduce type operations. The cartesianness of the base type
theory is also a simplifying assumption, but one that we will not (in this book)
ever generalize away from. People have attempted to define first-order logics
over non-cartesian base theories, but in general the results are more complicated
and less intuitive, and there are fewer interesting categorical examples.

Secondly, in this section the logic will be posetal, so that we care only about
the existence of derivations rather than their values, and hence we will not
introduce terms belonging to propositions. We will generalize away from this
assumption in §4.5.

4.1.1 Structural rules and simple rules

With all that out of the way, we move on to actually describing the rules. As
mentioned above, the base type theory is that for cartesian multicategories under
a multigraph G:

` A type (x : A) ∈ Γ

Γ ` x : A
id

f ∈ G(A1, . . . , An;B) Γ `M1 : A1 · · · Γ `Mn : An

Γ ` f(M1, . . . ,Mn) : B
f

As usual, cut/substitution is admissible for this theory. For the propositions, we
have two kinds of judgment:

Γ ` ϕ prop Γ | Θ ` ϕ

where Θ is a context (i.e. a list) of propositions. Here the proposition ϕ should
be regarded as a sort of “term” for the proposition judgment, that can be shown
to uniquely determine a derivation of Γ ` ϕ prop.

Before discussing the rules for these judgments, however, we have to decide
what to do about the structural rules such as cut. As with propositional logic,
we can formulate first-order logic in either a natural deduction or a sequent

4.1. PREDICATE LOGIC 157

Γ | Θ, ϕ, ψ,∆ ` χ
Γ | Θ, ψ, ϕ,∆ ` χ

exchange
Γ | Θ,∆ ` χ

Γ | Θ, ϕ,∆ ` χ
weakening (maybe)

Γ | Θ, ϕ, ϕ,∆ ` χ
Γ | Θ, ϕ,∆ ` χ

contraction (maybe)
Γ | ϕ ` ϕ

Γ | Θ ` ϕ Γ | Ψ, ϕ ` ψ
Γ | Ψ,Θ ` ψ

Γ `M : A Γ, x : A ` ϕ prop

Γ ` ϕ[M/x] prop

Γ `M : A Γ, x : A | Θ ` ϕ
Γ | Θ[M/x] ` ϕ[M/x]

Figure 4.1: Structural rules for first-order logic

calculus style to make cut admissible. However, I feel that both choices require
formulating at least one of the rules for quantifiers and equality in a less-than-
maximally-intuitive way. Of course, intuitions differ from person to person. But
it is also a more objective fact that the most categorically natural versions of
the rules, as we will see in §4.2, also do not exactly match either the sequent
calculus or the natural deduction versions. There are also new structural rules,
namely substitution of terms into propositions and entailments, that we would
eventually like to be admissible as well.

For these reasons we take the following approach. In this section we state
all the structural rules, including both those that will stay primitive and those
that will eventually be admissible. Then in §§4.1.2–4.1.4 we discuss the rules
for the quantifiers and equality, mentioning all the ways that each rule can
be formulated and showing that they are equivalent in the presence of all the
structural rules. Finally, in §4.1.5 we show that the natural deduction rules do
make an appropriate selection of the structural rules admissible.

The complete list of structural rules is shown in Figure 4.1. As in §2.7,
we always have exchange for propositions, but we allow ourselves the freedom
to take or omit weakening and contraction, corresponding to a choice of a
faithful cartesian club S (as in §2.6). Depending on which we choose, we speak
of intuitionistic first-order logic (all the structural rules), intuitionistic
first-order linear logic (exchange only), etc.

Then there are the identity and cut rule for propositions; the latter is just
the cut rule from §2.7.1 with an extra type context Γ. There are also two
new structural rules arising from the dependency of propositions on types:
substitution of terms into propositions and into entailments.

Of all these structural rules, there is one that it is most important (for the
purpose of categorical semantics) to make admissible: substitution of terms into
propositions. This is for the same reason that we want substitution into terms to

158 CHAPTER 4. FIRST-ORDER LOGIC

be admissible. Namely, we certainly want to be able to make such substitutions,
but if we asserted them as primitive then (to maintain the unique correspondence
between names for propositions ϕ and the derivations of Γ ` ϕ prop) we would
have to introduce “ϕ[M/x]” as basic syntax, rather than an operation on syntax.

For instance, we want to be able to substitute M for x and N for y into x = y,
and we want to be able to actually do that substitution on the syntax to get
M = N , rather than having to write (x = y)[M/x,N/y] everywhere. Another
possibility would be to break the “propositions are derivations” correspondence
and allow one proposition to have multiple derivations, but that has the same
problems as breaking the “terms are derivations” correspondence in simple type
theory; we do care about which proposition we are talking about.

Fortunately, it is just as easy to ensure that substitution into propositions is
admissible as it is to ensure that cut is admissible in a natural deduction. We
just make sure to “build enough substitutions” into the rules for the proposition
judgment, so that their conclusions always have a fully general context. Thus,
we will always do this in our rules for the proposition judgment.

The other structural rules are all for entailment, and since at the moment
we are interested in semantics where entailment corresponds to inequality in a
poset, we only care about whether or not an entailment is derivable rather than
what all its derivations are. Thus, it makes little difference (for the purpose of
categorical semantics) whether these rules are primitive or admissible. (However,
there are still other technical advantages to admissibility.)

Now we move on to the logical rules for the proposition and entailment
judgments. To start with, there will be the usual rules for propositional logic
from §2.7. We import these rules into our present theory by assigning all of
them an arbitrary context of types in the base theory that remains unchanged
between the premises and the conclusion. For instance, the rules for ∨ are

Γ | Θ ` A
Γ | Θ ` A ∨B

∨I1
Γ | Θ ` B

Γ | Θ ` A ∨B
∨I2

Γ | Ψ ` A ∨B Γ | Θ, A ` C Γ | Θ, B ` C
Γ | Θ,Ψ ` C

∨E

and likewise we have rules for ⊥,∧,>,⊗,1, and (. Of course, in the cartesian
case we can dispense with ⊗ and 1 (since they coincide with ∧ and >), and write
(instead as ⇒ or →. The modularity of type theory means we can also mix
and match, choosing the rules corresponding to some of these connectives but
not others; in §4.3 we will see that some groups of connectives are particularly
natural from a categorical perspective.

The interesting new things happen with the new operations on propositions
that do change the type context. We will consider three such operations, which
are particularly natural both categorically and logically. The first two are
the quantifiers “for all” (the “universal quantifier”) and “there exists” (the
“existential quantifier”). The rules introducing these two propositions both look

4.1. PREDICATE LOGIC 159

the same:

Γ, x : A ` ϕ prop

Γ ` (∀x:A.ϕ) prop

Γ, x : A ` ϕ prop

Γ ` (∃x:A.ϕ) prop

(Note that in both cases the variable x is bound in the resulting proposition,
just as it is in λx.M . If there is no danger of confusion, we may abbreviate
these to ∀x.ϕ and ∃x.ϕ, but in general the type annotation is necessary to make
type-checking possible.) But the rules governing entailments involving them, of
course, are different.

Recall that in natural deduction each type operation has either introduction
and elimination rules, while in sequent calculus these are reformulated as right
and left rules. In the past we have motivated these rules by appeal to universal
properties in a categorical structure, with one group of rules giving the basic
data and the other giving their universal factorization property. The rules for ∃
and ∀ do correspond to universal properties, but since we have postponed the
semantics of first-order logic to §4.2 we will attempt to instead motivate their
rules from an intuitive understanding of logic.

4.1.2 The universal quantifier

Informally, how do we prove that ∀x:A.ϕ? Arguably the most basic way to
do it is to assume given an arbitrary x : A and prove that ϕ is true (here ϕ is
a statement involving x, hence involving our arbitrary assumed x : A). This
suggests the following introduction (or right) rule:

Γ, x : A | Θ ` ϕ
Γ | Θ ` ∀x:A.ϕ

∀I

Note that since Θ appears in the conclusion, where x is no longer in the type
context, Θ cannot depend on x, even though syntactically the premise would
allow that.

Similarly, what good does it do to know that ∀x:A.ϕ? The most basic thing
it tells us is that if we have any particular element M of A, then ϕ is true about
M , i.e. with M replacing x. The simplest way to formulate this is

Γ `M : A

Γ | (∀x:A.ϕ) ` ϕ[M/x]
∀S

But there are many other ways to say the same thing, including a sequent-calculus-
style left rule, a natural-deduction-style elimination rule, and the opposite of the
introduction rule:

Γ `M : A Γ | Θ ` ∀x:A.ϕ

Γ | Θ ` ϕ[M/x]
∀E

Γ `M : A Γ | Θ, ϕ[M/x] ` ψ
Γ | Θ, (∀x:A.ϕ) ` ψ

∀L

Γ | Θ ` ∀x:A.ϕ

Γ, x : A | Θ ` ϕ
∀I−1

160 CHAPTER 4. FIRST-ORDER LOGIC

All of these rules are inter-derivable in the presence of cut and substitution. For
instance, we can derive ∀E from ∀I−1 using substitution:

Γ `M : A

Γ | Θ ` ∀x:A.ϕ

Γ, x : A | Θ ` ϕ
∀I−1

Γ | Θ ` ϕ[M/x]
sub

We can derive ∀S as a special case of ∀E using the identity rule:

Γ `M : A Γ | (∀x:A.ϕ) ` ∀x:A.ϕ

Γ | (∀x:A.ϕ) ` ϕ[M/x]
∀E

We can derive ∀L from ∀S using cut:

Γ `M : A

Γ | (∀x:A.ϕ) ` ϕ[M/x]
∀S

Γ | Θ, ϕ[M/x] ` ψ
Γ | Θ, (∀x:A.ϕ) ` ψ

cut

and finally ∀I−1 from ∀L using cut and weakening:

Γ | Θ ` ∀x:A.ϕ

Γ, x : A | Θ ` ∀x:A.ϕ
weak

Γ, x : A ` x : A Γ, x : A | ϕ ` ϕ
Γ, x : A | (∀x:A.ϕ) ` ϕ

∀L

Γ, x : A | Θ ` ϕ
cut

In practice, therefore, we are free to use whichever rule we find most intuitive or
convenient. To make substitition and cut admissible in §4.1.5 we will use ∀E,
while for categorical semantics in §4.2 we will use ∀I−1.

Remark 4.1.1. Note that many of these rules involve substitution into proposi-
tions. Thus, formally speaking we have to state all the rules for the proposition
judgment Γ ` ϕ prop first, then prove that substitution into propositions is
admissible (thereby defining the notation ϕ[M/x]), and only after that can we
state all the rules for the entailment judgment Γ | Θ ` ϕ. A similar situation
obtained for the equality judgment ≡ for simple and unary type theories, which
often involved substitution into terms (e.g. (λx.M)N ≡M [N/x]), so that we had
to prove the admissibility of the latter before stating the rules for ≡ (and likewise,
when proving the initiality theorems, we had to show that our functor-in-progress
took substitution to composition before defining it on equalities). However, in
practice we actually state all the rules at once, with the implicit understanding
that afterwards we will define substitution so that the rules involving it make
sense.

We do have to be careful, when taking such a shortcut, to notice whether we
are introducing any “cyclic dependencies”. For instance, if there are any rules
for the term or proposition judgments whose premises involve the entailment
judgment, it is no longer possible to complete the definition of the former, then
define substitution for them, and then give the definition of the latter: we would

4.1. PREDICATE LOGIC 161

have to give the definition all at once, including (somehow) defining substitution
at the same time. It is possible to do this, but it is much more difficult and leads
us into the realm of dependent type theory; see chapter 6.

In this chapter and chapter 5 none of our rules will introduce such cyclic
dependencies. We mention the possibility only as a warning to the reader,
because it is easy (especially when adding rules to a type theory one by one) to
fail to notice a cyclic dependency when it appears.

4.1.3 The existential quantifier

The most basic way to prove ∃x:A.ϕ is to exhibit a particular element M of A
and prove that it has the property ϕ (that is, ϕ with M replacing x is true).
This is of course a “constructive” proof. In classical mathematics one can also
give “nonconstructive” existence proofs, but these arise by use of the law of
excluded middle or its equivalent law of double negation. The basic way to prove
existence, which uses no other logical laws than the meaning of “existence”, is to
supply a witness. This leads to the following introduction (or right) rule for ∃:

Γ `M : A Γ | Θ ` ϕ[M/x]

Γ | Θ ` ∃x:A.ϕ
∃I

On the other hand, what good does it do to know that ∃x:A.ϕ? It means
we are free to assume that we have some element of A satisfying ϕ (but about
which we assume nothing else). This is most simply expressed by a left rule:

Γ, x : A | Θ, ϕ ` ψ
Γ | Θ, (∃x:A.ϕ) ` ψ

∃L

This is perhaps the least intuitive of the quantifier rules: it says that if we can
prove some other statement ψ under the assumption of some arbitrary x : A
that satisfies ϕ, then we can also conclude ψ under the assumption of ∃x:A.ϕ.
(Note the similarity in structure between ∃L and ⊗L; this suggests the eventual
universal property we will find corresponding to ∃.)

By building in a cut, we can re-express ∃L as an elimination rule instead:

Γ | Ψ ` ∃x:A.ϕ Γ, x : A | Θ, ϕ ` ψ
Γ | Θ,Ψ ` ψ

∃E

Of course ∃E follows from ∃L plus cut, while we can obtain ∃L from ∃E by
taking Ψ to be (∃x:A.ϕ).

Technically, we should actually add some additional premises to ∃E and ∃L
to ensure that ψ and Θ are defined in context Γ rather than Γ, x : A, since
otherwise the premises would permit the latter. Otherwise we would not want
to let ourselves write Γ | Θ ` ψ (with x not appearing in Γ, as implied by our
conventions and the fact that in a premise we wrote Γ, x : A). Thus we ought to

162 CHAPTER 4. FIRST-ORDER LOGIC

write them as

Γ ` ψ prop Γ ` Θ ctx Γ, x : A | Θ, ϕ ` ψ
Γ | Θ, (∃x:A.ϕ) ` ψ

∃L

Γ ` ψ prop Γ ` Θ ctx Γ | Ψ ` ∃x:A.ϕ Γ, x : A | Θ, ϕ ` ψ
Γ | Θ,Ψ ` ψ

∃E

where Γ ` Θ ctx is an abbreviation for

Γ ` B1 prop · · · Γ ` Bn prop

if Θ = (B1, . . . , Bn). However, we often neglect to write such conditions explicitly.
Finally, now that we have ∃E/∃L, we note that ∃I can also be reformulated

in a couple of other ways:

Γ | Θ, (∃x:A.ϕ) ` ψ
Γ, x : A | Θ, ϕ ` ψ

∃L−1

Γ, x : A | ϕ ` ∃x:A.ϕ
∃S

These are both inter-derivable with ∃I in the presence of cut and substitution.
For instance, we can deduce ∃S as a special case of ∃I:

Γ, x : A ` x : A Γ, x : A | ϕ ` ϕ
Γ, x : A | ϕ ` ∃x:A.ϕ

∃I

We can get ∃L−1 from ∃S and cut:

Γ, x : A | ϕ ` ∃x:A.ϕ
∃S

Γ | Θ, (∃x:A.ϕ) ` ψ
Γ, x : A | Θ, (∃x:A.ϕ) ` ψ

weak

Γ, x : A | Θ, ϕ ` ψ
cut

And we can get ∃I by substituting and cutting in ∃L−1:

Γ | Θ ` ϕ[M/x]

Γ `M : A

Γ | (∃x:A.ϕ) ` ∃x:A.ϕ

Γ, x : A | ϕ ` ∃x:A.ϕ
∃L−1

Γ | ϕ[M/x] ` ∃x:A.ϕ
sub

Γ | Θ ` ∃x:A.ϕ
cut

Thus, we are free to use whichever of these rules is most convenient. To make
substitition and cut admissible in §4.1.5 we will use ∃E and ∃I, while for
categorical semantics in §4.2 we will use ∃L and ∃L−1.

4.1.4 Equality

The third and last new operation on propositions is perhaps the subtlest of all:
the equality proposition. Its formation rule is unsurprising: it says that for any
two terms of the same type, we can consider the proposition that they are equal.

Γ `M : A Γ ` N : A

Γ ` (M =A N) prop

4.1. PREDICATE LOGIC 163

(The subscript annotation A in M =A N is needed for type-checking; but as
usual, we will often omit it.) But how are we to describe its behavior? The most
classical approach to equality is to assert that it is reflexive, symmetric, transitive,
and “substitutive” (i.e. if ϕ[M/x] and M = N , then also ϕ[N/x]). This is very
much like how we described the equality judgment M ≡ N in chapters 1 and 2.
It works here too, but it doesn’t fit the general introduction/elimination pattern
of natural deduction, and therefore its categorical semantics are not as obvious.

It is one of the great insights of Lawvere [Law70] (presaged by Leibniz, and
approximately contemporaneous with a similar observation by Martin-Löf) that
the rules of reflexivity, symmetry, transitivity, and substitutivity are equivalent
to the following pair of rules:

Γ, x : A | () ` (x =A x)
=R

Γ, x : A | Θ[x/y] ` ϕ[x/y]

Γ, x : A, y : A | Θ, (x =A y) ` ϕ
=L

The first, right/introduction, rule is simply reflexivity. When combined with a
substitution (to make substitution into entailment admissible) it becomes

Γ `M : A

Γ | () ` (M =A M)
(4.1.2)

and if we have weakening, we can more generally derive Γ | Θ ` (M =A M) for
any proposition context Θ.

The left rule is the tricky one to understand. Intuitively, it says that if we
have a statement about x and y, and that statement becomes true when we
substitute x for y, then that statement is true under the hypothesis that x = y.
More generally, we can replace the truth of a statement with the truth of an
entailment Θ ` ϕ, where we also substitute x for y in Θ in the premise. In other
words, if we have a hypothesis that x = y, then we may as well write x instead
of y everywhere that it appears.

To help motivate this rule further, let us derive symmetry and transitivity
from it. Here is symmetry:

x : A, y : A ` (y =A x) prop x : A | () ` (x =A x)

x : A, y : A | (x =A y) ` (y =A x)

We use the left rule once, with ϕ being y =A x, so that ϕ[x/y] is x =A x, which
we can prove by reflexivity.

And here is transitivity:

x : A, y : A, z : A ` (x =A z) prop x : A, y : A | (x =A y) ` (x =A y)

x : A, y : A, z : A | (x =A y), (y =A z) ` (x =A z)

We again use the left rule once on the hypothesis y =A z, with ϕ being x =A z,
so that ϕ[y/z] is x =A y, which we can prove by the identity rule from the other

164 CHAPTER 4. FIRST-ORDER LOGIC

hypothesis. Note that both symmetry and transitivity are derivable rules in the
sense of Remark 1.2.6.

As with so many things, the only way to really understand this rule is to
practice it. We recommend the reader try their hand at Exercise 4.1.3.

There are a few more technical things to be said about =L. Firstly, like ∃L,
it should technically have additional premises making clear what Θ and ϕ are:

Γ, x : A, y : A ` ϕ prop Γ, x : A, y : A ` Θ ctx Γ, x : A | Θ[x/y] ` ϕ[x/y]

Γ, x : A, y : A | Θ, (x =A y) ` ϕ

Secondly, to make substitution into entailments admissible, it needs substitutions
for M and N built in:

Γ, x : A, y : A ` ϕ prop Γ, x : A, y : A ` Θ ctx
Γ `M : A Γ ` N : A Γ, x : A | Θ[x/y] ` ϕ[x/y]

Γ | Θ[M/x,N/y], (M =A N) ` ϕ[M/x,N/y]
(4.1.3)

Thirdly, to make cut for propositions admissible, it needs another cut built in as
well; see Figure 4.2.

4.1.5 First-order theories

The last thing we need is some “generator” rules that would allow us to speak of
a “first-order theory”. In addition to our multigraph G giving the base types and
terms, we would like to also have a set P of “base propositions” (usually called
atomic propositions). Each of these should have an assigned type context, i.e.
a list of objects of G; we write P(A1, . . . , An) for the set of atomic propositions
with context A1, . . . , An. Then we will have a generator rule for propositions,
with substitutions built in just like the generator rule for terms:

P ∈ P(A1, . . . , An) Γ `M1 : A1 · · · Γ `Mn : An

Γ ` P (M1, . . . ,Mn) prop

Remark 4.1.4. Note that while we write ϕ for a generic proposition that might
contain a variable x, and ϕ[M/x] for the result of substituting M for that variable
x, if P is an atomic proposition we write P (x) and P (M) for its instantiations
at a variable x or a more general term M . As always, substitution ϕ[M/x] is an
operation on propositions; while the application P (M) is, like the application of
a function symbol f(M), a primitive part of syntax. The relationship between
them is that (P (x))[M/x] is, by definition, P (M) (see Theorem 4.1.6).

Remark 4.1.5. There is a substantial tradition of terminology according to which
the phrase atomic proposition includes not just these “generating” propositions,
but also equality propositions (M =A N). This is entirely understandable histor-
ically, since when equality is presented using laws such as reflexivity, symmetry,
transitivity, and substitution it appears “axiomatic” rather than governed by
principled rules like those of the connectives and quantifiers. However, from a
modern (i.e. post-Lawvere [Law70]) perspective, we can see that the rules =R

4.1. PREDICATE LOGIC 165

and =L have the same shape as those of the other connectives and quantifiers,
and in §4.2 we will see that they similarly express a categorical universal property.
Thus, it makes much more sense to call the equality rules logical, like those of the
connectives and quantifiers, and restrict the adjective atomic to the generating
propositions.

Finally, we should have some generating entailments, i.e. axioms. Each of
these should have an assigned type context A1, . . . , An, an assigned proposition
context Θ, and an assigned consequent ϕ. Here ϕ and the elements of Θ should
be propositions in context x1 : A1, . . . , xn : An — not just atomic propositions,
but arbitrary ones derivable from the atomic ones and the rules for making new
propositions. If we write A(A1, . . . , An; Θ;ϕ) for the assertion that there is such
an axiom, then simplest form of the generator rule introducing axioms will be

A(A1, . . . , An; Θ;ϕ)

x1 : A1, . . . , xn : An | Θ ` ϕ

To make substitution into entailments admissible, we should build one in:

A(A1, . . . , An; Θ;ϕ) Γ `M1 : A1 · · · Γ `Mn : An

Γ | Θ[~M/~x] ` ϕ[~M/~x]

And to make cut admissible we should also build in a cut; see Figure 4.2.
With this rule added to the other rules for entailment, we complete the

definition of intuitionistic first-order S-logic. If we include both weakening
and contraction, we speak simply of intuitionistic first-order logic, while
other values of S have appropriate names like intuitionistic first-order linear
logic (no weakening or contraction) and so on. A first-order theory in any
such logic consists of all the generating data:

(a) A set of objects (also called types or sorts);

(b) A set of morphisms (also called function symbols), each with a list of objects
as its domain and a single object as its codomain;

(c) A set of atomic propositions (also called predicates or relation symbols),
each with a list of objects as its domain or arity; and

(d) A set of axioms, each consisting of a type context, a proposition context,
and a consequent.

The qualifier “intuitionistic” is because, like in §2.7, we cannot prove the law
of excluded middle ϕ ∨ ¬ϕ (where ¬ϕ means ϕ(⊥), or its equivalent the law
of double negation ¬¬ϕ(ϕ. In §2.7 we motivated this by noting that leaving
it out just means our “logic” has models in all Heyting algebras rather than just
Boolean algebras. We will be able to say something similar, and hopefully even
more convincing, about first-order logic in §4.3.

A few important subsystems of intuitionistic first-order logic that will reappear
later are:

166 CHAPTER 4. FIRST-ORDER LOGIC

� Coherent logic: includes ∧,>,∨,⊥,∃,= but not ⇒ or ∀ (hence also not ¬).

� Regular logic: includes ∧,>,∃,= but not ∨,⊥,⇒,¬,∀.

� Horn logic: includes ∧,>,= but not ∨,⊥,⇒,¬,∀,∃.

� Another important logic is geometric logic, which is like coherent logic but
also includes the “infinitary disjunction” from Exercise 2.7.5.

� In §4.4 we will study a somewhat more complicated logic to define called
finite-limit or lex logic.

At last we are ready to consider admissibility of substitution and cut. To be
precise, we work with the natural deduction for first-order intuitionistic
S-logic consisting of:

(a) The rules for forming terms and propositions;

(b) The exchange and possibly (depending on S) weakening and contraction
rules;

(c) The identity rule Γ | ϕ ` ϕ for all propositions ϕ;

(d) The natural deduction rules for intuitionistic S-logic from Figure 2.7, with
an arbitrary type context Γ; and

(e) The natural deduction rules for quantifiers, equality, and axioms summarized
in Figure 4.2.

Of course, the modularity of type theory means we can mix and match these
rules, removing any number of type operations and their corresponding rules
without altering the main theorems.

Note also that the rules =E and axiom from Figure 4.2 incorporate an
additional cut on the left. For this we have used a shortcut notation Γ | Φ ` Θ
where Θ is a proposition context, meaning that Γ | Φ ` θ for each θ ∈ Θ.

We start with the admissibility of substitution into propositions.

Theorem 4.1.6. Substitution into propositions is admissible: given derivations
of Γ, x : A ` ϕ prop and Γ ` M : A, we can construct a derivation of Γ `
ϕ[M/x] prop.

Proof. As with substitution into terms, this is entirely straightforward because
we have written all the rules for such judgments with an arbitrary type context.
Some of the defining clauses are

(ϕ ∧ ψ)[M/x] = ϕ[M/x] ∧ ψ[M/x]

(∀y:B.ϕ)[M/x] = ∀y:B.ϕ[M/x]

(N =B P)[M/x] = (N [M/x] =B P [M/x])

In the case of ∀ (and also ∃), we have to ensure (by α-equivalence if necessary)
that x and y are distinct variables, and that y does not occur in M . This is

4.1. PREDICATE LOGIC 167

Γ, x : A | Θ ` ϕ
Γ | Θ ` ∀x:A.ϕ

∀I
Γ `M : A Γ | Θ ` ∀x:A.ϕ

Γ | Θ ` ϕ[M/x]
∀E

Γ `M : A Γ | Θ ` ϕ[M/x]

Γ | Θ ` ∃x:A.ϕ
∃I

Γ | Ψ ` ∃x:A.ϕ Γ, x : A | Θ, ϕ ` ψ
Γ | Θ,Ψ ` ψ

∃E
Γ `M : A

Γ | () ` (M =A M)
=I

Γ `M : A Γ ` N : A
Γ, x : A | Θ[x/y] ` ϕ[x/y] Γ | Ψ ` (M =A N) Γ | Φ ` Θ[M/x,N/y]

Γ | Φ,Ψ ` ϕ[M/x,N/y]
=E

A(A1, . . . , An; Θ;ϕ)

Γ `M1 : A1 · · · Γ `Mn : An Γ | Φ ` Θ[~M/~x]

Γ | Φ ` ϕ[~M/~x]
axiom

Figure 4.2: Natural deduction rules for quantifiers, equality, and axioms

the same issue that arose in §§2.4, 2.5 and 2.8 when substituting into terms
with bound variables such as match+ and λ-abstractions. As always, this is only
an issue when representing derivations by terms; the underlying operation on
derivations has no notion of “bound variable”.

Note also that substitution into an equality proposition is defined using
substitution into the terms appearing in it. But since terms never involve
propositions, there is no cyclic dependency: we can first prove the admissibility of
substitution into terms, and then use it to prove the admissibility of substitution
into propositions.

Just as substitution into terms is associative, substitution into propositions
satisfies as “functoriality” property that can be proven in the same way:

ϕ[N/y][M/x] = ϕ[M/x][N [M/x]/y] (4.1.7)

Theorem 4.1.8. Substitution into entailments is admissible: if we have deriva-
tions of Γ, x : A ` Θ ` ϕ and Γ ` M : A, we can construct a derivation of
Γ ` Θ[M/x] ` ϕ[M/x].

Proof. Just like Theorem 4.1.6, we substitute recursively into the derivation
of Γ, x : A ` Θ ` ϕ. This works because all the entailment rules have a fully
general type context in the conclusion, so the substitution can always be done
inductively on their premises.

168 CHAPTER 4. FIRST-ORDER LOGIC

Theorem 4.1.9. Cut for propositions is admissible in the natural deduction for
first-order intuitionistic S-logic: given derivations of Γ | Θ ` ϕ and Γ | Ψ, ϕ ` ψ,
we can construct a derivation of Γ | Ψ,Θ ` ψ.

Proof. As usual, we induct on the derivation of Γ | Ψ, ϕ ` ψ. This works because
all the rules for the natural deduction have a fully general proposition context
in the conclusion as well.

As in §2.7.2, in the cartesian case we can make exchange, weakening, and
contraction admissible as well, by reformulating the rules ∃E and =E to keep
the same proposition context in the premises and the conclusion, and the identity
rule to incorporate a weakening. The reformulated rules are

Γ | Θ ` ∃x:A.ϕ Γ, x : A | Θ, ϕ ` ψ
Γ | Θ ` ψ

∃E′

Γ `M : A Γ ` N : A
Γ, x : A | Φ,Θ[x/y] ` ϕ[x/y] Γ | Φ ` (M =A N) Γ | Φ ` Θ[M/x,N/y]

Γ | Φ ` ϕ[M/x,N/y]
=E′

We leave the proof to the reader (Exercise 4.1.5).

Recall also from §2.7.3 that with such a reformulation, the natural deduction
of intuitionistic propositional logic can be formulated without explicit contexts,
instead “discharging” temporary assumptions by crossing them out. The same is
true for intuitionistic first-order logic with ∀ and ∃, if we also allow “assumptions
of variables” (i.e. additions to the type context, in addition to the proposition
context, as we move up the derivation tree) that can be discharged by the
quantifier rules. Usually we do not bother to include the derivations of term
judgments in this style; we just write down the terms wherever they are needed.

For instance, here is a derivation in this style of the intuitionistic tautology
ϕ ∧ (∃x:A.ψ)⇒ (∃x:A. (ϕ ∧ ψ)).

((((
(((ϕ ∧ (∃x:A.ψ)

∃x:A.ψ

���x : A

((((
(((ϕ ∧ (∃x:A.ψ)

ϕ ��ψ

ϕ ∧ ψ
∧I

∃x:A. (ϕ ∧ ψ)
∃I

∃x:A. (ϕ ∧ ψ)
∃E′

ϕ ∧ (∃x:A.ψ)⇒ (∃x:A. (ϕ ∧ ψ))
⇒I

The hypotheses x : A and ψ are discharged by the ∃E′, while the two occurences
of the hypothesis ϕ ∧ (∃x:A.ψ) are discharged by the ⇒I. Without too much
stretch, this can be regarded as a direct formalization of the following informal
English proof:

4.1. PREDICATE LOGIC 169

Suppose ϕ ∧ (∃x:A.ψ), that is ϕ and ∃x:A.ψ. By the latter, we may
assume given an x such that ψ. Now we have both ϕ and ψ, so ϕ∧ψ.
Thus, ∃x:A. (ϕ∧ψ), and so we have ϕ∧ (∃x:A.ψ)⇒ (∃x:A. (ϕ∧ψ)).

Remark 4.1.10. In particular, this (nontrivial!) interaction between ∧ and ∃ is,
like the distributive law of ∧/⊗ over ∨ from Exercise 2.3.4 and §2.7, implied
automatically by the structure of our contexts and how they interact with the
rules for ∧ and ∃. There is sometimes a temptation to “simplify” logic by
presenting it as a unary type theory, arguing that a context Θ = (ϕ1, . . . , ϕn)
can always be replaced by the conjunction ϕ1 ∧ · · · ∧ ϕn, and perhaps even
replacing entailments ϕ ` ψ by implications ϕ⇒ ψ. This is technically possible,
but it forces one to assert laws like these “by hand”, breaking principle (∗) and
making for a less congenial theory. More importantly, as remarked in §2.7.3,
allowing arbitrarily many propositions in the context yields a formal theory that
matches informal reasoning much better: as in the example above, informally we
frequently apply inference rules in the presence of other unaffected hypotheses.

Furthermore, for categorical semantics it is important to maintain the dis-
tinction between entialment and implication, since entailment corresponds to
a morphism in a category, whereas implication corresponds to an internal-hom
in a category. In particular, the former always exists, but the latter may not.
Phrasing the rules for logical operations such as ∃ and ∨ in a way that matches
ordinary reasoning, and doesn’t refer to any other operations such as ⇒, ensures
that ordinary informal (constructive) reasoning can be formalized and remain
valid in any category as long as it uses only operations that exist in that cate-
gory. This is important because we will see in §4.3 that certain fairly natural
conditions on categories allow them to model some, but not always all, of the
logical operations.

The rule =E′ is a bit tricker to write in this style because of the arbitrary
context Θ that has to be substituted into. One approach is to use Exercise 4.1.1,
which shows that as long as we also have implication we can get around this. A
more direct approach is to allow the proof of ϕ[x, y] to discharge an arbitrary
number of hypotheses of the form θ[x/y], as long as we also supply corresponding
proofs of θ[M/x,N/y] to the rule =E′. For instance, with one θ formula the
rule would look like this:

...

M =A N

...

θ[M/x,N/y]

���x : A ���θ[x/y]
...

ϕ[x/y]

ϕ[M/x,N/y]

170 CHAPTER 4. FIRST-ORDER LOGIC

Exercises

Exercise 4.1.1. Assuming we have (, show that the rule =R is derivable (recall
Remark 1.2.6) from the following simpler rule with no proposition context Θ:

Γ `M : A Γ ` N : A
Γ, x : A, y : A ` ϕ prop Γ ` Θ ctx Γ, x : A | Θ ` ϕ[x/y]

Γ | Θ, (M =A N) ` ϕ[M/x,N/y]

Exercise 4.1.2. Three of the following four sequents are derivable in intuitionistic
first-order logic (for any type A, context Γ, and proposition Γ, x : A ` ϕ prop);
derive them.

Γ | ∃x:A.¬ϕ ` ¬∀x:A.ϕ

Γ | ∀x:A.¬ϕ ` ¬∃x:A.ϕ

Γ | ¬∀x:A.ϕ ` ∃x:A.¬ϕ
Γ | ¬∃x:A.ϕ ` ∀x:A.¬ϕ

Exercise 4.1.3. In a first-order theory with three types A, B, C, two generating
arrows f : A→ B and g : B → A, one atomic proposition P with domain (A,B),
and no axioms, derive the following judgments:

(a) x1 : A, x2 : A, y : B | ϕ(x1, y), (x1 =A x2) ` ϕ(x2, y)

(b) x1 : A, x2 : A | (x1 =A x2) ` f(x1) =B f(x2)

(c) () | (∀x:A. g(f(x)) =A x) ` ∀x1:A.∀x2:A. ((f(x1) =B f(x2))→ (x1 =A x2))

Exercise 4.1.4. Write down a first-order theory for each of the following structures.
If you can, formulate them so that they fit inside the specified fragment.

(a) Partially ordered sets (Horn)

(b) Totally ordered sets (coherent)

(c) Fields (coherent)

(d) Categories (regular)

Exercise 4.1.5. Prove that in intuitionistic first-order logic with ∃E and =E
replaced by ∃E′ and =E′ as mentioned at the end of the section, the structural
rules of exchange, weakening, and contraction for proposition contexts are
admissible.

4.2 First-order hyperdoctrines

Now we move on to the categorical semantics of first-order logic. Continued
adherence to principle (‡) suggests that the structural rules, including for instance
the substitution of terms into propositions and entailments, should correspond

4.2. FIRST-ORDER HYPERDOCTRINES 171

to basic operations in an appropriate categorical structure. This would lead us
to the following structure.

Let S be a faithful cartesian club, and recall from §2.6 the notion of S-
multicategory and S-multiposet. In contrast to chapters 1 and 2, in this chapter
we will assume for simplicity that our multiposets do satisfy antisymmetry: if
x ≤ y and y ≤ x then x = y. Allowing distinct isomorphic objects, while morally
correct, would lead us down a 2-categorical road that we prefer to postpone until
§4.5.

Definition 4.2.1. Let S be a cartesian multicategory and C a category. A
C-valued presheaf on S consists of

(a) For each list (A1, . . . , An) of objects of S, an object P(A1, . . . , An) ∈ C.

(b) For each list (f1, . . . , fm) of morphisms of S, with fi : (Ai1, . . . , Aini)→ Bi,
a morphism in C:

(f1, . . . , fn)∗ : P(B1, . . . , Bm)→ P(A11, . . . , Amnm
)

(c) These morphisms are associative and unital with respect to composition in
S:

(f11, . . . , fmnm)∗ ◦ (g1, . . . , gm)∗ = (g1 ◦ (f11, . . . , f1n1), . . . , gm ◦ (fm1, . . . , fmnm))∗

(idA1 , . . . , idAn)∗ = idP(A1,...,An)

(d) For each σ : {1, . . . ,m} → {1, . . . , n}, a morphism in C:

P(Aσ1, . . . , Aσm;B)→ P(A1, . . . , An;B)

satisfying analogues of the axioms in Definition 2.6.4.

One way to understand the definition is that it is precisely the structure
possessed by the contravariant representables: for any object B in a cartesian
multicategory S, there is a Set-valued presheaf S(−;B).

Now the categorical structure corresponding to first-order logic should consist
of a cartesian multicategory S and a presheaf P on S valued in the category of
S-multiposets. The objects and morphisms of S represent the types and terms,
respectively; while the objects of P(A1, . . . , An) represent the propositions in
context (A1, . . . , An) and its morphisms/inequalities represent the entailments
in that same context. Composition in S represents substitution into terms,
composition in each P(A1, . . . , An) represents the cut rule for propositions, and
the functorial action of P represents substitution of terms into propositions and
entailments.

However, in addition to being nonstandard, this structure is rather unnec-
essarily complicated. It can be simplified greatly by the following observation,
whose proof we leave to the reader (Exercise 4.2.1).

172 CHAPTER 4. FIRST-ORDER LOGIC

Lemma 4.2.2. C-valued presheaves on a cartesian multicategory S are equiva-
lent to ordinary C-valued presheaves on the category with finite products freely
generated by S as in Lemma 2.9.1.

Moreover, in practice we rarely care about semantics in cartesian multicate-
gories that do not arise from categories with products. Thus, we retreat slightly
from the principled position of chapter 2, and simplify our lives by taking the
base S to be a category with products rather than a cartesian multicategory
throughout. This leads to the following definition.

Definition 4.2.3. An S-indexed S-multiposet is a functor P from Sop to
the category of S-multiposets.

Since we do not include product types in our base theory, this means that
the free structure generated from a first-order logic will involve the category
of contexts introduced in §2.9, and possess a universal property only up to
equivalence. For this reason we will often use letters like Γ,∆ for objects of S.
Thus, in this definition we have categorical counterparts of the type contexts
(objects of S), terms (morphisms of S), substitution into terms (composition
in S), propositions (objects of P(Γ)), entailments (morphisms of P(Γ)), cut for
propositions (composition in P(Γ)), and substitution of terms into propositions
and entailments (the functorial action of P). In general for a morphism f : Γ→ ∆
in S, we write f∗ : P(∆)→ P(Γ) for this latter action and call it a reindexing
or substitution functor.

The propositional operations imported from §2.7 are also easy to describe
categorically.

Definition 4.2.4. Let P be an S-indexed S-multiposet. We say that P has
products, coproducts, is representable, or is closed, if each S-multiposet
P(Γ) has the corresponding structure, and that structure is preserved by the
reindexing functors f∗.

We did not define formally in §2.2 what it means for a functor to preserve
all these properties of a multicategory, but we trust the reader can do it. The
requirement that f∗ preserve these properties is necessary because substitution
in type theory does, by definition, preserve the type operations: (ϕ∧ψ)[M/x] =
(ϕ[M/x]∧ψ[M/x]) and so on. Thus, in the free structure built from type theory
the reindexing functors do preserve all the relevant structure, so we can’t hope
for it to be initial except in a world where that structure is always preserved.

Of course, one may naturally wonder, where do indexed multiposets with
these properties come from? We will consider this question in more depth in
§4.3, but here are three fundamental examples to help the intuition.

Example 4.2.5. Let S = Set be the category of sets, and define P(Γ) to be the
poset of subsets of the set Γ, with its cartesian multiposet structure. The latter
is in fact a Heyting algebra, and moreover a Boolean algebra: ∧ is intersection,
∨ is union, ¬ is complement.

4.2. FIRST-ORDER HYPERDOCTRINES 173

Example 4.2.6. Let S be any category with finite limits, and define P(Γ) to be
the poset of subobjects of Γ, i.e. isomorphism classes of monomorphisms with
codomain Γ. The reindexing functors are given by pullback. When S = Set,
this reproduces Example 4.2.5 up to isomorphism. In general, we need more
structure on S to ensure that this P has the structure of Definition 4.2.4; we
will study this question in §4.3.

Example 4.2.7. Let H be any complete Heyting algebra, let S = Set, and define
P(Γ) = HΓ, the poset of Γ-indexed families {hi}i∈Γ of objects of H. The Heyting
algebra operations on H applied pointwise (e.g. {hi}i∈Γ∧{ki}i∈Γ = {hi∧ki}i∈Γ)
make P(Γ) a Heyting algebra as well. Note that when H = 2, this again
reproduces Example 4.2.5 up to isomorphism.

It remains to consider categorical analogues of the quantifiers and equal-
ity. Lawvere’s fundamental insight [Law06, Law70] was that these correspond
categorically to adjoint functors.

Consider, for instance, the universal quantifier. We saw in §4.1.2 that its
rules could be given as the following pair:

Γ, x : A | Θ ` ϕ
Γ | Θ ` ∀x:A.ϕ

∀I
Γ | Θ ` ∀x:A.ϕ

Γ, x : A | Θ ` ϕ
∀I−1

which are clearly inverses to each other. Categorically, they say that to have a
morphism from Θ to ∀x:A.ϕ in P(Γ) is equivalent to having a morphism from
Θ to ϕ in P(Γ, A). Here the second Θ technically denotes the weakening of Θ to
the context Γ, x : A, which categorically will be the functorial action of P applied
to the projection (Γ, A) → Γ. Note that the latter is one of the projections
of a cartesian product in the category of contexts. This leads to the following
definition.

Definition 4.2.8. Let F :M→N be a functor of S-multicategories. We say
it has a right adjoint if for each object B ∈ N there is an object GB ∈ M
and a morphism εB : FGB → B in N such that for any A1, . . . , An ∈ M, the
composite

M(A1, . . . , An;GB)
F−→ N (FA1, . . . , FAn;FGB)

εB◦−−−−→ N (FA1, . . . , FAn;B)

is a bijection.

The case n = 1 of this definition implies immediately that the underlying
ordinary functor of F has a right adjoint in the usual sense. Conversely, in the
case whenM and N are representable, it is sufficient to have such an underlying
adjoint together with the fact that F preserves tensor products; see Exercise 4.2.3.
Moreover, if G exists, it can be made into a functor N →M, that is right adjoint
to M in an appropriate 2-category of S-multicategories; see Exercise 4.2.2.

We need one more thing for a categorical analogue of ∀: we need to know
that this structure is “preserved by the reindexing functors” in an appropriate
sense. The appropriate sense is the following.

174 CHAPTER 4. FIRST-ORDER LOGIC

Definition 4.2.9. Let S be a category, let P : Sop → Cat be a functor, and
suppose we have a commutative square in S:

A
h //

f

��

C

g

��

B
k
// D.

Suppose furthermore that the functors f∗ : P(B) → P(A) and g∗ : P(D) →
P(C) have right adjoints f∗ and g∗. We say that P satisfies the right Beck–
Chevalley condition with respect to this square (or sometimes that the square
satisfies the Beck-Chevalley condition with respect to P) if the composite natural
transformation

k∗g∗
ηk∗g∗−−−−→ f∗f

∗k∗g∗ = f∗h
∗g∗g∗

f∗h
∗ε−−−−→ f∗h

∗

is an isomorphism. Dually, if f∗ and g∗ have left adjoints f! and g!, we say P
satisfies the left Beck–Chevalley condition with respect to the above square
if the composite

f!h
∗ f!h

∗η−−−→ f!h
∗g∗g! = f!f

∗k∗g!
εk∗g!−−−→ k∗g!

is an isomorphism.

When P is an S-indexed S-multiposet, we apply this definition to its un-
derlying functor into posets (regarded as categories). Since our posets are
antisymmetric, every isomorphism is an equality, and so in this case we have
k∗g∗ = f∗h

∗ (or f!h
∗ = k∗g!). Now we can state:

Definition 4.2.10. An S-indexed S-multiposet has universal quantifiers if

(a) For any objects Γ, A ∈ S, the reindexing functor P(Γ)→ P(Γ×A) has a
right adjoint in the sense of Definition 4.2.8; and

(b) For any morphism f : Γ → ∆ and object A in S, P satisfies the right
Beck–Chevalley condition with respect to the square

Γ×A
f×idA //

��

∆×A

��

Γ
f

// ∆.

Note that the Beck–Chevalley condition is true in the syntax because the
universal quantifier is preserved by substitution, by definition of substitution:
(∀x:A.ϕ)[M/y] = ∀x:A.ϕ[M/y] as long as y 6= x. For the indexed poset of

4.2. FIRST-ORDER HYPERDOCTRINES 175

subsets from Example 4.2.5, the right adjoint to (πA)∗ : P(Γ) → P(Γ × A) is
similarly defined by

(πA)∗(ϕ) = { x ∈ Γ | ∀y ∈ A.(x, y) ∈ ϕ } .

Such right adjoints for Example 4.2.6 will be studied in §4.3.4; while for Exam-
ple 4.2.7, they can defined by

(πA)∗
(
{h(i,a)}(i,a)∈Γ×A

)
=

{∧
a

h(i,a)

}
i∈Γ

The existential quantifier is similar, but a bit more subtle. We saw in §4.1.3
that its rules could be expressed as the pair

Γ, x : A | Θ, ϕ ` ψ
Γ | Θ, (∃x:A.ϕ) ` ψ

∃L
Γ | Θ, (∃x:A.ϕ) ` ψ
Γ, x : A | Θ, ϕ ` ψ

∃L−1

which likewise seem to express some kind of adjunction; but there is an extra
context Θ hanging around. Translating directly across the correspondence to
multicategories, this leads to the following definition.

Definition 4.2.11. Let G : M → N be a functor of S-multicategories. We
say it has a Hopf left adjoint if for each object B ∈ N there is an object
FB ∈ M and a morphism η : B → GFB in N such that for any objects
A1, . . . , An, C1, . . . , Cm, D ∈M, the composite

M(~A, FB, ~C;D)
G−→ N (G~A,GFB,G~C;GD)

−◦(n+1)η−−−−−−→ N (G~A,B,G~C;GD)

is a bijection.

As before, the case n = m = 1 implies that the underlying ordinary functor
has a left adjoint in the usual sense. Conversely, whenM andN are representable
and G preserves tensor products, an underlying left adjoint is a Hopf left adjoint
just when some canonical maps are isomorphisms; see Exercise 4.2.6. Unlike the
case of right adjoints, however, in general a Hopf left adjoint cannot be made
into a functor of multicategories.

Definition 4.2.12. An S-indexed S-multiposet has existential quantifiers
if

(a) For any objects Γ and A of S, the reindexing functor P(Γ)→ P(Γ×A) has
a Hopf left adjoint in the sense of Definition 4.2.11; and

(b) For any morphism f : Γ → ∆ and object A in S, P satisfies the left
Beck–Chevalley condition with respect to the square

Γ×A
f×idA //

��

∆×A

��

Γ
f

// ∆.

176 CHAPTER 4. FIRST-ORDER LOGIC

Unsurprisingly, for the indexed poset of subsets from Example 4.2.5, the left
adjoint to (πA)∗ : P(Γ)→ P(Γ×A) is similarly defined by

(πA)!(ϕ) = { x ∈ Γ | ∃y ∈ A.(x, y) ∈ ϕ } .

Left adjoints for Example 4.2.6 will be studied in §4.3.2, while those in Exam-
ple 4.2.7 can be defined like the right adjoints using joins instead of meets:

(πA)!

(
{h(i,a)}(i,a)∈Γ×A

)
=

{∨
a

h(i,a)

}
i∈Γ

Finally, we consider the rules for equality:

Γ, x : A | () ` (x =A x)

Γ, x : A | Θ[x/y] ` ϕ[x/y]

Γ, x : A, y : A | Θ, (x =A y) ` ϕ

Although we didn’t mention it in §4.1.4, the first of these rules is equivalent to
the opposite of the second, similarly to what happened for the quantifiers. One
direction is immediate:

Γ, x : A, y : A | (x =A y) ` (x =A y)

Γ, x : A | () ` (x =A x)

while the other uses a cut and a substitution:

Γ, x : A | () ` x =A x

Γ, x : A, y : A | Θ, (x =A y) ` ϕ
Γ, x : A | Θ[x/y], (x =A x) ` ϕ[x/y]

subst x/y

Γ, x : A | Θ[x/y] ` ϕ[x/y]
cut

Thus, what we have looks very much like a (Hopf) left adjoint to substitution
along the diagonal (Γ, A)→ (Γ, A,A) in the category of contexts; but there is
no proposition in context (Γ, A) that it is applied to. This suggests the following
definitions.

Definition 4.2.13. Let G :M→N be a functor of S-multicategories. We say
it has a Hopf left adjoint at () if there is an object F ∈M and a morphism
η : ()→ GF in N such that for any objects A1, . . . , An, C1, . . . , Cm, D ∈M, the
composite

M(~A, F, ~C;D)
G−→ N (G~A,GF,G~C;GD)

−◦(n+1)η−−−−−−→ N (G~A,G~C;GD)

is a bijection.

Definition 4.2.14. Suppose given an S-indexed S-multiposet P and a commu-
tative square in S:

A
h //

f

��

C

g

��

B
k
// D,

4.2. FIRST-ORDER HYPERDOCTRINES 177

and suppose that the reindexing functors f∗ and g∗ have Hopf left adjoints at
(), given by objects f! ∈ P(B) and g! ∈ P(D). Then there is a unique morphism

f! → k∗g! in P(B) such that the composite ()
η−→ f∗f! → f∗k∗g! in P(A) is equal

to the composite ()
h∗η−−→ h∗g∗g! (note f∗k∗ = h∗g∗). We say that P satisfies

the left Beck–Chevalley condition at () with respect to this square if this
morphism f! → k∗g! is an isomorphism.

Definition 4.2.15. An S-indexed S-multiposet with unit objects has equality
if

(a) For any objects Γ andA of S, the reindexing functor P(Γ×A×A)→ P(Γ×A)
has a Hopf left adjoint at (); and

(b) For any morphism f : Γ → ∆ and object A in S, P satisfies the left
Beck–Chevalley condition at () with respect to the square

Γ×A
f×idA //

��

∆×A

��

Γ×A×A
f×idA×idA

// ∆×A×A.

As before, the Beck–Chevalley condition is true in the syntax because “equal-
ity is preserved by substitution”. The relevant substitution here is not the one
built into the equality rule, though, but the substitution for different variables,
which doesn’t change the equality proposition at all: (x =A y)[M/z] = (x =A y)
as long as z 6= x and z 6= y. For the indexed poset of subsets from Example 4.2.5,
the left adjoint to (∆A)∗ : P(Γ×A×A)→ P(Γ×A) at () is defined by

(∆A)! = { (i, x, y) ∈ Γ×A×A | x = y } .

Left adjoints in Example 4.2.6 actually always exist (see Theorem 4.3.1), while
those in Example 4.2.7 can be defined by

((∆A)!)(i,x,y)∈Γ×A×A =

{
> if x = y

⊥ if x 6= y.

Note that we are sticking doggedly to the principle that just as the rules
for a given type operation should be independent of any other type operations,
the corresponding universal property should be statable without reference to
any other objects with universal properties.1 If we do have additional structure,
particularly tensor products and units in the multiposets P(Γ), then our various
kinds of adjoints can be formulated in terms of those and ordinary adjunctions —
see Exercises 4.2.2, 4.2.3, 4.2.6 and 4.2.8 — and our examples in §4.3 will mainly
arise in this way. However, to make a closer connection to the type theory we
prefer to formulate them independently first.

1At least, other universal properties in the multiposets P(Γ). We do still refer to cartesian
products in S, but we could also remove those by working with “presheaves on multicategories”
as sketched at the beginning of this section.

178 CHAPTER 4. FIRST-ORDER LOGIC

Definition 4.2.16. A first-order S-hyperdoctrine consists of a category S
with finite products together with an S-indexed S-multiposet that is closed and
representable and has products (finite meets), coproducts (finite joins), universal
and existential quantifiers, and equality.

By default, a first-order hyperdoctrine refers to the cartesian case where
S contains all functions; in this case representability is equivalent to having
finite meets. More generally, an S-indexed cartesian multiposet is called a:

(a) coherent hyperdoctrine if it has finite meets, finite joins, existential
quantifiers, and equality;

(b) geometric hyperdoctrine if it has finite meets, infinite joins, existential
quantifiers, and equality;

(c) regular hyperdoctrine if it has finite meets, existential quantifiers, and
equality; and a

(d) Horn hyperdoctrine if it has finite meets and equality.

Note that since all the structure of a first-order S-hyperdoctrine is determined
by universal properties, it is unique up to isomorphism, and hence unique on the
nose in an (antisymmetric) poset. Thus, there is no need to suppose separately
that we have chosen such operations.

Theorem 4.2.17. The free first-order S-hyperdoctrine generated by a first-order
S-theory can be presented, up to equivalence, by the type theory of the latter:

� S is the category of type contexts; and

� the poset P(Γ) is obtained from the poset of proposition judgments Γ ` ϕ prop
and derivable entailments Γ | Θ ` ϕ by identifying isomorphic objects (since
in this section our posets are antisymmetric).

(And similarly for the other fragments with fewer type operations.)

Proof. We have already observed that this structure defines an indexed S-
multicategory and that the simple type operations ∧,>,∨,⊥,⊗,1,(yield the
appropriate multicategorical strurcture. Moreover, we defined the categorical
notions of universal and existential quantifiers and equality precisely so that
they would hold in the syntax; thus the description above does yield a first-order
S-hyperdoctrine.

Now, the underlying multigraph of a first-order S-theory is of course a finite-
product theory without axioms, and we showed in §2.9 that the category of
contexts of its type theory is, up to equivalence, the free category with products it
generates. Thus, it maps uniquely (up to isomorphism) into the base category of
any other first-order S-hyperdoctrine; it remains to show that this map extends
uniquely to a map of hyperdoctrines, i.e. a natural transformation between the
P-functors preserving all the structure.

As usual, we do this by induction on derivations. The proposition judgment
Γ ` ϕ prop is easy: each rule corresponds to one of the objects with a universal

4.2. FIRST-ORDER HYPERDOCTRINES 179

property that we have assumed to exist in any first-order S-hyperdoctrine. Next,
since the rules for entailment involve substitution of terms into propositions,
before defining our functor on entailments we have to first prove that it maps
such substitutions to the reindexing functors in the target; this is another
straightforward induction on derivations of Γ ` ϕ prop. Now the rules for
entailment involving simple type operations are also easy, just as in §2.7. Finally,
in §§4.1.2–4.1.4 and this section we showed that the natural deduction rules for
quantifiers and equality are inter-derivable (in the presence of substitution and
cut) with the rules that exactly express the appropriate kind of adjunctions.

This completes the definition on entailments. Since everything is posetal there
is not much left to do: we show that our map preserves all the hyperdoctrine
structure, essentially by definition, and then that it is unique (modulo the up-to-
isomorphism uniqueness of the functor on base categories), because its definition
was forced at every step.

Remark 4.2.18. As noted in Remark 2.7.8 for propositional logic, Theorem 4.2.17
implies the traditional soundness and completeness theorems for first-order logic
with respect to hyperdoctrines. The soundness theorem says that if we can
prove Γ | () ` ϕ, then when we interpret our logic into any hyperdoctrine, ϕ
must go to the top element, i.e. it must “be true”. In particular, this applies to
models in the hyperdoctrine of sets and subsets from Example 4.2.5, which are
the classical notion of “model”. (In §4.3 we will construct hyperdoctrines from
more general categories than Set.) Conversely, the completeness theorem says
that if something is true in all hyperdoctrines, then it must in particular be true
in the free one constructed from the type theory, and therefore must be provable
in the type theory.

Remark 4.2.19. Note that all categorical structure corresponding to quantifiers
and equality takes the form of certain adjoints to reindexing functors. As we
will see in §4.3, most examples arising in practice naturally have adjoints to
all the reindexing functors (if they have any). However, this is not actually an
additional condition; given only the adjoints assumed in our definition of first-
order hyperdoctrine, we can construct adjoints to arbitrary reindexing functors
and prove that they satisfy some Beck–Chevalley conditions. At the moment,
we leave this proof to the reader; see Exercise 4.2.9. (In fact, it is more usual to
include all such adjoints, and their Beck–Chevalley conditions, in the definition
of “hyperdoctrine”.)

Exercises

Exercise 4.2.1. Prove Lemma 4.2.2.

Exercise 4.2.2. Suppose a functor F :M→N of S-multicategories has a right
adjoint in the sense of Definition 4.2.8.

(a) Prove that if M and N are both representable, then F preserves tensor
products in the sense of Exercise 2.2.4.

(b) Extend G to a functor G : N →M.

180 CHAPTER 4. FIRST-ORDER LOGIC

(c) Define a 2-category of S-multicategories and show that G is right adjoint
to F in this 2-category (i.e. there are 2-cells η : 1→ GF and ε : FG→ 1 in
this 2-category satisfying the triangle identities).

Exercise 4.2.3. Let M and N be representable S-multicategories. Prove that a
functor F :M→ N has a right adjoint in the sense of Definition 4.2.8 if and
only if (1) it preserves tensor products in the sense of Exercise 2.2.4 and (2) its
underlying ordinary functor has a right adjoint.

Exercise 4.2.4. Show that an S-multicategory M has binary products, in the
sense defined before Theorem 2.2.5, if and only if the diagonal M→M×M
has a right adjoint in the sense of Definition 4.2.8.

Exercise 4.2.5. Let P : Sop → Cat and suppose we have a commutative square
in S:

A
h //

f

��

C

g

��

B
k
// D.

such that f∗ and g∗ have left adjoints and also h∗ and k∗ have right adjoints.
Prove that P satisfies the left Beck-Chevalley condition with respect to this
square if and only if it satisfies the right Beck–Chevalley condition with respect
to the transposed square

A
f
//

h
��

B

k
��

C
g
// D.

Exercise 4.2.6. LetM and N be representable S-multicategories, and G :M→
N a functor preserving tensor products.

(a) Show that G has a Hopf left adjoint if and only if its underlying ordinary
functor has a left adjoint F such that the canonical map

F (A⊗GB)→ F (GFA⊗GB) ∼−→ FG(FA⊗B)→ FA⊗B

is an isomorphism for any A ∈ N and B ∈M.

(b) If M and N are additionally closed, and G is also closed in the sense that
the canonical maps G(A(B)→ GA(GB are isomorphisms, prove that
g has a Hopf left adjoint if and only if its underlying ordinary functor has a
left adjoint.

Exercise 4.2.7. Show that an S-multicategory M has binary coproducts, in the
sense defined before Theorem 2.2.6, if and only if the diagonal M→M×M
has a Hopf left adjoint.

4.3. HYPERDOCTRINES OF SUBOBJECTS 181

Exercise 4.2.8. LetM and N be S-multicategories, let G :M→N be a functor
having a Hopf left adjoint, and assume that N has a unit object. Prove that G
also has a Hopf left adjoint at ().

Exercise 4.2.9. Suppose P : Sop → Heyt is a first-order S-hyperdoctrine as
defined in the text.

(a) Prove (using type theory or commutative diagrams, your choice) that in
fact the reindexing functor f∗ : P(∆)→ P(Γ) has a Hopf left adjoint for all
morphisms f : Γ→ ∆ in S. (Hint: in the hyperdoctrine of subsets over Set,
these left adjoints can be defined by f!(ϕ) = { y ∈ ∆ | ∃x ∈ Γ.(x ∈ ϕ ∧ f(x) = y) }.)

(b) Similarly, prove that f∗ has a right adjoint for all f .

(c) Prove that these left adjoints satisfy both Beck–Chevalley conditions for
commutative squares of the following form:

A
(1,f)

//

f

��

A×B

f×1

��

B
∆

// B ×B

A
∆ //

∆

��

A×A

1×∆

��

A×A
∆×1

// A×A×A

4.3 Hyperdoctrines of subobjects

Finally, we turn to the question of where hyperdoctrines come from. From now
on we will focus entirely on the cartesian monoidal case (with all the structural
rules), which is the most-studied and most-applicable.

4.3.1 Horn hyperdoctrines from finite limits

Example 4.2.5 suggests that from a category S, we should try to construct
a hyperdoctrine such that for Γ ∈ S, P(Γ) is a poset of “subobjects” of Γ.
Moreover, there is a standard way to define a subobject of Γ, namely as an
isomorphism class of monomorphisms with target Γ.

We write this poset as SubS(Γ), or just Sub(Γ). To make SubS into an S-
indexed poset in a natural way, we need S to have pullbacks of monomorphisms
along arbitrary morphisms. However, a category with finite products and
pullbacks of monomorphisms automatically has all finite limits, since the equalizer
of f, g : A → B can be constructed as the pullback of the monomorphism
∆ : B → B ×B along (f, g) : A→ B ×B.

Thus, from now on we assume that S has finite limits, so that SubS is an
S-indexed poset (which we already mentioned in Example 4.2.6). Moreover
this S-indexed poset has products (meets) and a terminal (greatest) object;
the former are given by pullback of monomorphisms (which we henceforth call
intersections) and the latter by the monomorphism idΓ : Γ → Γ. We can also
show:

182 CHAPTER 4. FIRST-ORDER LOGIC

Theorem 4.3.1. If S has finite limits, then SubS has equality. Therefore, it is
a Horn hyperdoctrine.

Proof. For any objects Γ and A, the diagonal 1 × ∆ : Γ × A → Γ × A × A
is itself a monomorphism, so we can regard it as a subobject of Γ × A × A.
For this to give the desired Hopf left adjoint at (), we must show that for any
monomorphisms Θ � Γ × A × A (being the intersection of some number of
subobjects) and C � Γ × A × A, we have Θ ∩ (Γ × A) ≤ C as subobjects of
Γ×A×A if and only if we have (1×∆)∗Θ ≤ (1×∆)∗C as subobjects of Γ×A.
However, Θ ∩ (Γ×A) and (1×∆)∗Θ are the same object, and so this bijection
is just using the universal property of the pullback (1×∆)∗C:

(1×∆)∗Θ

$$

""

''

(1×∆)∗C

��

// C

��

Γ×A
1×∆

// Γ×A×A

Finally, we have a pullback square:

Γ×A //

��

∆×A

��

Γ×A×A
f×1×1

// ∆×A×A

which implies the Beck–Chevalley condition.

Therefore, any Horn theory can be interpreted into any category with finite
limits. (In fact, more than this can be done in categories with finite limits, but it
is slightly tricky to characterize exactly what; we will come back to this in §4.4.)

4.3.2 Regular categories

Now we move on to regular logic. For SubS to have existential quantifiers, we
need some way to make a subobject C � Γ×A into a subobject of Γ. In SubSet,
the desired subset of Γ is the image of the composite function C � Γ×A→ Γ,
so it seems natural to consider categories that have a well-behaved notion of
“image factorization”.

Definition 4.3.2. An extremal epimorphism is a morphism e : A→ B in a
category such that if e = mg with m a monomorphism, then m is an isomorphism.
A regular category is a category with finite limits such that every morphism
f factors as me where m is a monomorphism and e an extremal epimorphism,
and moreover extremal epimorphisms are stable under pullback.

4.3. HYPERDOCTRINES OF SUBOBJECTS 183

We start with a lemma about extremal epimorphisms:

Lemma 4.3.3. Let S be a category with finite limits.

(a) Every extremal epimorphism is an epimorphism.

(b) If we have a commutative square in S

A //

e

��

C

m

��

B // D

in which e is an extremal epimorphism and m a monomorphism, there exists
a unique morphism B → C making both triangles commute. (This means,
by definition, that e is also a strong epimorphism.)

(c) If a morphism f in S factors as me with e an extremal epi and m a
monomorphism, then such a factorization is unique up to isomorphism.

Proof. For (a), if e is extremal epi and fe = ge, then the equalizer of f and g
is a monomorphism through which e factors; so it is an isomorphism and thus
f = g.

For (b), the projection B ×D C → B is a monomorphism through which e
factors, so it is an isomorphism. The composite B → B ×D C → C is then the
desired morphism; its uniqueness follows from the fact that m is mono.

For (c), two such factorizations give a squares as in (b) whose transpose is
also such a square, so it has diagonal fillers in both directions, giving inverse
isomorphisms.

Theorem 4.3.4. A category S with finite limits is regular if and only if SubS
has existential quantifiers.

Proof. First suppose S is regular, and that we have a subobject ϕ � Γ × A.
Factor the composite ϕ� Γ×A→ Γ as an extremal epi ϕ→ ∃Aϕ followed by
a mono ∃Aϕ� Γ. Then we must show that given any other monos Θ� Γ and
ψ� Γ, we have Θ ∩ ∃Aϕ ≤ ψ if and only if (πA)∗Θ ∩ ϕ ≤ (πA)∗ψ. Now by the
functoriality of pullback, we have a diagram:

(πA)∗Θ ∩ ϕ

��

&&

// Θ ∩ ∃Aϕ

��

$$

ϕ

��

// ∃Aϕ

��

(πA)∗Θ

&&

// Θ

$$
Γ×A

πA

// Γ.

184 CHAPTER 4. FIRST-ORDER LOGIC

Thus in one direction, if Θ∩∃Aϕ ≤ ψ, we have a composite map (πA)∗Θ∩ϕ→ ψ
over Γ, which induces a map (πA)∗Θ ∩ ϕ ≤ (πA)∗ψ by the universal property of
pullback (πA)∗. And in the other direction, if (πA)∗Θ ∩ ϕ ≤ (πA)∗ψ, we have a
square

(πA)∗Θ ∩ ϕ //

��

(πA)∗ψ // ψ

��

Θ ∩ ∃Aϕ // Γ

as in Lemma 4.3.3(b). (The fact that the left-hand arrow is an extremal epi uses
the assumption on a regular category that pullback preserves extremal epis.)
Thus there is a diagonal filler giving Θ ∩ ∃Aϕ ≤ ψ.

For the Beck–Chevalley condition, if we have f : Γ → ∆ and a mono
ϕ� ∆×A, by pasting pullback squares we see that the outer rectangle below
is a pullback:

(f × idA)∗ϕ

��

// ϕ

��

Γ×A
f×idA //

��

∆×A

��

Γ
f

// ∆

Now if we pull back the factorization ϕ → ∃Aϕ → ∆ along f we get another
pair of pullback squares

(f × idA)∗ϕ

��

// ϕ

��

f∗(∃Aϕ)
f×idA //

��

∃Aϕ

��

Γ
f

// ∆.

Since monos and extremal epis are both stable under pullback, the left-hand maps
form a factorization of the map (f × idA)∗ϕ→ Γ; and since such factorizations
are unique by Lemma 4.3.3(c), we must have f∗(∃Aϕ) ∼= ∃A((f × idA)∗ϕ), which
is what the Beck–Chevalley condition requires.

Now suppose S has finite limits and SubS has existential quantifiers. Given
a morphism f : A → B, its “graph” (f, 1) : A → B × A is a monomorphism.
Applying the existential quantifier for the projection πA : B × A → B, we
obtain a monomorphism ∃(f, 1) : C � B with the property that ∃(f, 1) ≤ D
as subobjects of B if and only if (f, 1) ≤ (πA)∗D as subobjects of B × A. By
the universal property of pullback, the latter is equivalent to there being a
map A → D such that the composite A → D → B is equal to the composite

4.3. HYPERDOCTRINES OF SUBOBJECTS 185

A→ B ×A→ B; but the latter is f , so this just means that f factors through
D.

In particular, since ∃(f, 1) ≤ ∃(f, 1), it follows that f factors through it,
by some map e : A → ∃(f, 1), say. Moreover, if we have a monomorphism
D� ∃(f, 1) that e factors through, then f factors through the composite mono
D → B, and thus ∃(f, 1) ≤ D as subobjects of B; hence D ∼= ∃(f, 1). Thus, e is

extremal epic, and so A
e−→ ∃(f, 1)→ B is a factorization of f as required in the

definition of regular category.
The uniqueness of factorizations means that if f itself is extremal epic, then

∃(f, 1)→ B is an isomorphism. And of course, conversely, if ∃(f, 1)→ B is an
isomorphism, then f , like e, is extremal epic. Now the Beck–Chevalley condition
for existential quantifiers implies that the construction of ∃(f, 1) is preserved
by pullback. Thus so is the property of ∃(f, 1) → B being an isomorphism,
and thus so is the property of f being extremal epic. Therefore, S is a regular
category.

Regular categories are quite common. Of course, Set is regular. So is
any presheaf category; and, as we will see later, so is any “elementary topos”.
Moreover, the category of models of any finite-product theory (like monoids,
groups, rings, etc.) is also regular; see Exercise 4.3.3. Thus, regular logic can be
used to reason about any such category.

In fact, regular logic is quite useful in proving basic facts about regular
categories. To get started, we make the following observations.

Lemma 4.3.5. Consider the regular theory with two types A,B, one morphism
f : A→ B, and one axiom y : B | () ` ∃x:A. f(x) = y. A model of this theory
in a regular category S is precisely an extremal epimorphism in S.

Proof. By the proof of Theorem 4.3.4, we can construct the interpretation of
y : B ` (∃x:A. f(x) = y) prop as follows:

(a) Start with the diagonal B → B ×B, for y1 : B, y2 : B ` (y1 = y2) prop.

(b) Pull it back along (f × id) : A×B → B ×B, representing the substitution
x : A, y : B ` (f(y) = y) prop. This yields the graph (f, 1) : A→ A×B.

(c) Take the image of the composite A→ A×B → B. This composite is just
f , so its image is also the image of f .

Therefore, to interpret y : B | () ` ∃x:A. f(x) = y is to say that the image of f
is all of B, i.e. that f is extremal epic.

The next lemma requires only Horn logic, but there was not much point to
stating it before now.

Lemma 4.3.6. Consider the Horn theory with two types A,B, one morphism
f : A→ B, and one axiom x1 : A, x2 : A | (f(x1) = f(x2)) ` x1 = x2. A model
of this theory in a category with finite limits is precisely a monomorphism.

186 CHAPTER 4. FIRST-ORDER LOGIC

Proof. The interpretation of x1 : A, x2 : A ` (f(x1) = f(x2)) prop is the pullback
of the diagonal B → B ×B along f × f . This is otherwise known as the kernel
pair of f , namely the pullback of f along itself. Thus, the axiom of our theory
says pricely that this kernel pair is contained in the diagonal of A (as a subobject
of A×A). Now if we have h, k : X → A such that fh = fk, then (h, k) factors
through the kernel pair; hence it also factors through the diagonal, which means
h = k; so f is monic.

Our third lemma starts to reveal some of the real value of the logical approach.

Lemma 4.3.7. Suppose we have a regular theory containing two types A,B and
a proposition (not necessarily an atomic one) x : A, y : B ` ϕ prop such that the
following sequents are provable:

x : A | () ` ∃y:B.ϕ x : A, y1 : B, y2 : B | ϕ[y1/y], ϕ[y2/y] ` y1 = y2

Then for any interpretation of this theory in a regular category, the interpretation
of ϕ is a monomorphism ϕ� A×B such that the composite ϕ→ A×B → A is
an isomorphism; hence the composite A ∼= ϕ→ A×B → B defines a morphism
from A to B.

Proof. Let us consider what the two assumptions say. By construction of ∃, the
first says that the image of ϕ→ A×B → A is all of A, which is to say that this
composite is extremal epi.

The second says that if we pull ϕ→ A×B back along the two projections
π1, π2 : A× B × B ⇒ A× B, then the intersection (π1)∗ϕ ∩ (π2)∗ϕ lies inside
the diagonal ∆ : A×B → A×B ×B. We claim this means that the composite
ϕ→ A×B → A is mono. For if we have f, g : X → ϕ that are equalized in A,
we have an induced map X → A×B ×B that factors through (π1)∗ϕ ∩ (π2)∗ϕ.
Hence it also factors through ∆, which is to say that the two composites
X ⇒ ϕ→ A×B are equal; but since ϕ� A×B is mono, this implies f = g.

Thus, ϕ→ A×B → A is both extremal epi and mono. But since it factors
through itself, this implies it is an isomorphism.

We leave the proof of the final lemma to the reader (Exercise 4.3.8).

Lemma 4.3.8.

(a) If in Lemma 4.3.7 the proposition ϕ is f(x) = y for some morphism
f : A→ B in the theory, then the morphism A→ B defined by Lemma 4.3.7
is just the interpretation of f .

(b) If in a regular theory we have three types A,B,C and propositions

x : A, y : B ` ϕ prop y : B, z : C ` ψ prop x : A, z : C ` χ prop

all satisfying the hypotheses of Lemma 4.3.7, and moreover we can prove

x : A, y : B, z : C | ϕ,ψ ` χ

then under interpretation in any regular category, the induced morphisms
A→ B and B → C compose to the induced morphism A→ C.

4.3. HYPERDOCTRINES OF SUBOBJECTS 187

(axiom)

g(x) : C

y : B, x : A | (f(x) = y) ` (f(x) = y) y : B, x : A | (f(x) = y) ` (g(x) = g(x))
=I

y : B, x : A | (f(x) = y) ` (f(x) = y) ∧ (g(x) = g(x))
∧I

y : B, x : A | (f(x) = y) ` ∃x:A. ((f(x) = y) ∧ (g(x) = g(x)))
∃I

y : B, x : A | (f(x) = y) ` ∃z:C. ∃x:A. ((f(x) = y) ∧ (g(x) = z))
∃I

y : B | () ` ∃z:C. ∃x:A. ((f(x) = y) ∧ (g(x) = z))
∃E

Figure 4.3: Derivation tree of (a) in proof of Theorem 4.3.9

Putting all these lemmas together, we can prove a nontrivial theorem about
regular categories.

Theorem 4.3.9. In a regular category, every extremal epi is in fact a regular
epi (the coequalizer of some parallel pair).

Proof. We will show that every extremal epi is the coequalizer of its kernel pair.
Note that since an extremal epi is epi by Lemma 4.3.3(a), factorizations through
it are unique if they exist. Now, given f : A → B and g : A → C, we can
say that g coequalizes the kernel pair of f if and only if the kernel pair of f is
contained in the kernel pair of g as a subobject of A×A.

Thus, consider the regular theory with three types A,B,C, two morphisms
f : A→ B and g : A→ C, and the axioms

y : B | () ` ∃x:A. f(x) = y x1 : A, x2 : A | (f(x1) = f(x2)) ` (g(x1) = g(x2))

The first says exactly that f is extremal epi, while the second says that the
kernel pair of f is contained in the kernel pair of g. In this theory, define ϕ to
be the proposition

y : B, z : C ` ∃x:A. ((f(x) = y) ∧ (g(x) = z)) prop

We will prove the following sequents in this theory:

(a) y : B | () ` ∃z:C.ϕ

(b) y : B, z1 : C, z2 : C | ϕ[z1/z], ϕ[z2/z] ` z1 = z2

(c) x : A, y : B, z : C | ϕ, (f(x) = y) ` (g(x) = z)

Then by Lemmas 4.3.7 and 4.3.8, the interpretation of ϕ will define a morphism
B → C that factors g through f .

(a) Informally, suppose y : B. By one of our axioms, there exists an x : A such
that f(x) = y. Let z = g(x); then of course f(x) = y and g(x) = z.

A corresponding derivation tree is shown (with some parts abbreviated) in
Figure 4.3. The derivation trees of the next two would be even harder to
fit on a page, but there is nothing tricky about translating the informal
proofs into derivations. Thus we leave it to the reader, with some hints
about which rules are being used.

188 CHAPTER 4. FIRST-ORDER LOGIC

(b) Suppose we have y : B and z1, z2 : C, and assume ϕ[z1/z] and ϕ[z2/z], that
is to say ∃x:A. (f(x) = y ∧ g(x) = z1) and ∃x:A. (f(x) = y ∧ g(x) = z2).
Let x1, x2 : A be such (using ∃E), so that f(x1) = y and g(x1) = z1,
while f(x2) = y and g(x2) = z2. Then f(x1) = f(x2) (using transitivity of
equality), so by our other axiom, g(x1) = g(x2); hence (using transitivity
of equality again) z1 = z2.

(c) Suppose we have x : A and y : B and z : C, and that f(x) = y and ϕ, i.e.
∃x:A. (f(x) = y ∧ g(x) = z). Let x′ : A be such an element (using ∃E), so
that f(x′) = y and g(x′) = z. Then f(x) = f(x′) (by transitivity), so by our
second axiom, g(x) = g(x′), and therefore (by transitivity) g(x) = z.

As always, this logical proof can be “compiled out” to a proof using com-
mutative diagrams; see for instance [Joh02, A1.3.4]. However, I find the logical
proof much easier to understand.

4.3.3 Coherent categories

For coherent logic, there are few surprises.

Definition 4.3.10. A coherent category is a regular category in which the
posets Sub(Γ) have finite unions that are preserved by pullback.

Theorem 4.3.11. A regular category S is coherent if and only if SubS is a
coherent hyperdoctrine.

Proof. If SubS is a coherent hyperdoctrine, then clearly its joins are unions in
the subobject posets of S, and the Beck–Chevalley condition implies these are
stable under pullback. The converse is just as easy except for the presence of
an additional context Θ in the rule for ∨ (and similarly ⊥, but we leave that
case to the reader): we must show that if Θ ∩ ϕ ≤ χ and Θ ∩ ψ ≤ χ in Sub(Γ),
then Θ ∩ (ϕ ∪ ψ) ≤ χ. But Θ ∩ ϕ ≤ χ in Sub(Γ) is equivalent to m∗ϕ ≤ m∗χ
in Sub(Θ), where m : Θ� Γ is the given monomorphism, and similarly for the
other conditions; so this also follows from pullback-stability of unions.

In particular, in a coherent category, every object has a smallest subobject
0A � A. It is not obvious, but true, that for any object A, the domain 0A of
this smallest subobject is an initial object (and hence isomorphic to 0B for any
other B). For this purpose we need an additional lemma.

First note that although Lemmas 4.3.5 to 4.3.8 in §4.3.2 were stated for
regular theories, they are in fact valid for theories in any fragment of logic
containing regular logic, and for any category S such that SubS interprets that
fragment of logic. In particular, they are valid for coherent theories and coherent
categories. Second, we need the following further enhancement of Lemma 4.3.7,
whose proof we leave to the reader (Exercise 4.3.11).

Lemma 4.3.12. Suppose we have a theory in a logic containing regular logic
containing two types A,B and propositions

x : A ` α prop y : B ` β prop x : A, y : B ` ϕ prop

4.3. HYPERDOCTRINES OF SUBOBJECTS 189

such that the following sequents are provable:

x : A, y : B | ϕ ` α x : A, y : B | ϕ ` β x : A | α ` ∃y:B. (β ∧ ϕ)

x : A, y1 : B, y2 : B | α, β[y1/y], β[y2/y], ϕ[y1/y], ϕ[y2/y] ` y1 = y2

Then for any interpretation of this theory in a category S such that SubS models
the appropriate logic, the interpretation of ϕ yields (as in Lemma 4.3.7) a
morphism from the interpretation of α to the interpretation of β.

Theorem 4.3.13. If 0A � A is the smallest subobject of A in a coherent
category, then 0A is an initial object.

Proof. Let B be any other object, and consider the coherent theory with two
types A and B and nothing else. In this theory, let α = ⊥, β = >, and ϕ = ⊥.
Then all the sequents Lemma 4.3.12 have a ⊥ in their proposition context, hence
follow immediately from ⊥E. Since 0A is the interpretation of α and B is the
interpretation of β, we get a morphism 0A → B.

To show that it is unique, consider the theory with two objects Z and B and
two morphisms f, g : Z → B, and the axiom z : Z | () ` ⊥. This is modeled by
any two parallel morphisms in a coherent category whose domain has exactly
one subobject (up to isomorphism), which is the case whenever its domain is the
smallest subobject of some other object (like 0A). In this theory, we can prove
z : Z | () ` f(z) = g(z) by ⊥E, which easily implies f = g.

We leave some further basic facts about coherent categories to the reader as
Exercises 4.3.12 and 4.3.13.

4.3.4 Heyting categories

Finally, we add the rest of the structure of first-order logic: universal quantifica-
tion and implication.

Definition 4.3.14. A Heyting category is a coherent category S such that
for every f : Γ → ∆ in S, the pullback functor f∗ : Sub(∆) → Sub(Γ) has a
right adjoint.

Theorem 4.3.15. A coherent category S is a Heyting category if and only if
SubS is a first-order hyperdoctrine.

Proof. Since S is assumed to be coherent and in particular regular, by Exer-
cise 4.3.7 the left adjoints of f∗ satisfy the Beck–Chevalley condition for pullbacks
of projections. Thus, by Exercise 4.2.5, if these functors also have right adjoints,
they automatically satisfy the Beck–Chevalley condition for all pullback squares
as well, and in particular for pullbacks of projections. Thus, if S is Heyting,
then SubS has universal quantifiers. For implication, we note that the Heyting
exponential A→ B in Sub(Γ) can equivalently be constructed by first pulling
back from Sub(Γ) to Sub(A), then applying the right adjoint to this pullback;
this operation is stable under pullback by the same Beck–Chevalley condition.

190 CHAPTER 4. FIRST-ORDER LOGIC

Conversely, suppose SubS is a first-order hyperdoctrine, and in particular
has universal quantifiers. We consider two first-order theories, both with two
types A,B, a morphism f : A→ B, and atomic propositions x : A ` P (x) prop
and y : B ` Q(y) prop.

(a) Our first theory adds to this the axiom x : A | Q(f(x)) ` P (x). We will show
from this that y : B | Q(y) ` (∀x:A. (f(x) = y)⇒ P (x)). By the rules for ∀
and ⇒, it suffices to derive x : A, y : B | Q(y), (f(x) = y) ` P (x). But then
applying the rule for equality, it suffices to derive x : A | Q(f(x)) ` P (x),
which was an axiom.

(b) Our second theory instead takes y : B | Q(y) `` (∀x:A. (f(x) = y)⇒ P (x))
as an axiom. Applying the rules for ∀ and ⇒ in the other direction, we get
x : A, y : B | Q(y), (f(x) = y) ` P (x). Substituting f(x) for y in this, we
get x : A | Q(f(x)), (f(x) = f(x)) ` P (x); but since f(x) = f(x) is true by
reflexivity we can cut to get x : A | Q(f(x)) ` P (x).

Thus, if we define ∀f(P) by y : B ` (∀x:A. (f(x) = y)⇒ P (x)) prop, we see that
it has the correct universal property to be a right adjoint of pullback f∗ (the
latter given by substitution of f(x) for y).

Heyting categories are thus in some sense the most natural categorical
home for first-order logic. One origin of Heyting categories is explored in
Exercises 4.3.16 and 4.3.17: any locally cartesian closed category with finite
colimits is a Heyting category, including all elementary toposes and quasitoposes
(which, as we will see in chapter 5, also model higher -order logic). This book is
not about the category theory of (quasi)toposes, but we encourage the reader to
learn more about them; some good sources are [MLM94, McL92, Joh02, Wyl91].
In particular [Joh02] includes a comprehensive discussion of regular, coherent,
and Heyting categories from a purely category-theoretic viewpoint.

Exercises

Exercise 4.3.1. Suppose given a finite-product theory in the sense of §2.9. Then
we can make it into a Horn theory by replacing its ≡ axioms with = axioms
(with empty proposition context). If S is any category with finite limits, prove
that models of the original finite-product theory in S correspond bijectively to
models of the Horn theory in SubS . In this sense, first-order logic subsumes
finite-product logic; see Exercise 4.3.6 for a further enhancement.

Exercise 4.3.2. Prove that every regular epimorphism (in any category) is an
extremal epimorphism.

Exercise 4.3.3. Prove that if S is a regular category and T is any finite-product
theory (see §2.9), then the category of T -models in S is also regular.

Exercise 4.3.4. Give an example of a regular category that is not a coherent
category.

Exercise 4.3.5. A (unique or orthogonal) factorization system on a category
S is a pair (E ,M) of classes of morphisms in S such that

4.3. HYPERDOCTRINES OF SUBOBJECTS 191

(a) E and M are both closed under composition with isomorphisms;

(b) every morphism f in S factors as f = me where m ∈M and e ∈ E ; and

(c) if mh = ke with m ∈ M and e ∈ E , there exists a unique ` such that
m` = k and `e = h (as in Lemma 4.3.3(b)).

A factorization system is stable if E is stable under pullback (M is automatically
so), and proper if every morphism in E is an epimorphism and every morphism
in M is a monomorphism.

(a) Prove that if (E ,M) is a proper, stable, factorization system on a category
S with finite limits, there is a regular hyperdoctrine SubM where SubM(Γ)
is the sub-poset of SubS(Γ) consisting only of monomorphisms in M.

(b) If S additionally has finite coproducts that are stable under pullback, prove
that SubM(Γ) is a coherent hyperdoctrine.

(c) Show that both of the previous parts apply when S is the category of
topological spaces and M consists of the subspace inclusions.

(d) Is there an analogue of Lemma 4.3.7 for SubM?

Exercise 4.3.6. For any category S with finite products, define an S-indexed
poset SieveS by letting SieveS(Γ) be the poset of sieves on Γ. (A sieve on an
object Γ is a sub-functor of the representable functor S(−,Γ). More concretely,
it is a set of morphisms with codomain Γ, closed under precomposition with
arbitrary morphisms of S.)

(a) Prove that SieveS is always a first-order hyperdoctrine.

(b) If we make a finite-product theory into a Horn theory as in Exercise 4.3.1,
prove that models of the finite-product theory in S correspond bijectively
to models of the Horn theory in SieveS . Thus, first-order logic subsumes
finite-product logic even for categories having only finite products.

Exercise 4.3.7. Prove that in a regular category, the pullback functor f∗ :
Sub(∆) → Sub(Γ) has a left adjoint for every morphism f : Γ → ∆, and that
these left adjoints satisfy the Beck–Chevalley condition with respect to every
pullback square in S.

Exercise 4.3.8. Prove Lemma 4.3.8.

Exercise 4.3.9. Write out derivation trees for statements (b) and (c) in the proof
of Theorem 4.3.9. Feel free to use transitivity of equality as a (derivable) rule,
rather than writing it out explicitly in terms of =R.

Exercise 4.3.10. Rewrite the proof of the “if” direction of Theorem 4.3.4 using
regular logic rather than category theory.

Exercise 4.3.11. Prove Lemma 4.3.12.

Exercise 4.3.12. Prove using coherent logic that in a coherent category, any
morphism whose codomain is initial is an isomorphism.

192 CHAPTER 4. FIRST-ORDER LOGIC

Exercise 4.3.13. Prove using coherent logic that if we have monomorphisms
A� C and B� C in a coherent category, then the square

A ∩B //

��

B

��

A // A ∪B

is a pushout as well as a pullback. Conclude that if two objects of a coherent
category can be embedded as disjoint subobjects of some third object, then they
have a coproduct. (A coherent category in which this is true for any two objects
is called positive or extensive.)

Exercise 4.3.14. Let D be a distributive lattice that is not a complete lattice, and
let S be its free coproduct completion; the elements of S are set-indexed families
{ai}i∈I of elements of D, and the morphisms {ai}i∈I → {bj}j∈J are functions
f : I → J such that ai ≤ bf(i) for all i. Prove that SubS has the structure to
model the type operations ∧,>,∨,⊥, but not ∃.
Exercise 4.3.15. Give an example of a coherent category that is not a Heyting
category.

Exercise 4.3.16. Suppose S is a category with finite limits. Prove:

(a) If S has coequalizers that are stable under pullback, then it is a regular
category.

(b) If S has all finite colimits that are stable under pullback, then it is a coherent
category.

(c) If S has all finite colimits and is locally cartesian closed, then it is a Heyting
category.

Exercise 4.3.17.

(a) Show that the category of presheaves on any small category has finite limits
and colimits and is locally cartesian closed, hence is a Heyting category.

(b) Show that if S is locally cartesian closed with finite colimits, and T is a
reflective subcategory of S whose reflector preserves finite limits, then T is
also locally cartesian closed with finite colimits.

The categories obtained by applying (b) to (a) are called Grothendieck topoi.

4.4 Finite-limit theories

4.5 Indexed monoidal categories

Collected Exercises

For convenient reference, we collect the exercises from all sections in this chapter.

4.5. INDEXED MONOIDAL CATEGORIES 193

Exercise 4.1.1. Assuming we have (, show that the rule =R is derivable
(recall Remark 1.2.6) from the following simpler rule with no proposition context
Θ:

Γ `M : A Γ ` N : A
Γ, x : A, y : A ` ϕ prop Γ ` Θ ctx Γ, x : A | Θ ` ϕ[x/y]

Γ | Θ, (M =A N) ` ϕ[M/x,N/y]

Exercise 4.1.2. Three of the following four sequents are derivable in intuitionis-
tic first-order logic (for any type A, context Γ, and proposition Γ, x : A ` ϕ prop);
derive them.

Γ | ∃x:A.¬ϕ ` ¬∀x:A.ϕ

Γ | ∀x:A.¬ϕ ` ¬∃x:A.ϕ

Γ | ¬∀x:A.ϕ ` ∃x:A.¬ϕ
Γ | ¬∃x:A.ϕ ` ∀x:A.¬ϕ

Exercise 4.1.3. In a first-order theory with three types A, B, C, two generating
arrows f : A→ B and g : B → A, one atomic proposition P with domain (A,B),
and no axioms, derive the following judgments:

(a) x1 : A, x2 : A, y : B | ϕ(x1, y), (x1 =A x2) ` ϕ(x2, y)

(b) x1 : A, x2 : A | (x1 =A x2) ` f(x1) =B f(x2)

(c) () | (∀x:A. g(f(x)) =A x) ` ∀x1:A.∀x2:A. ((f(x1) =B f(x2))→ (x1 =A x2))

Exercise 4.1.4. Write down a first-order theory for each of the following
structures. If you can, formulate them so that they fit inside the specified
fragment.

(a) Partially ordered sets (Horn)

(b) Totally ordered sets (coherent)

(c) Fields (coherent)

(d) Categories (regular)

Exercise 4.1.5. Prove that in intuitionistic first-order logic with ∃E and =E
replaced by ∃E′ and =E′ as mentioned at the end of the section, the structural
rules of exchange, weakening, and contraction for proposition contexts are
admissible.

Exercise 4.2.1. Prove Lemma 4.2.2.

Exercise 4.2.2. Suppose a functor F : M → N of S-multicategories has a
right adjoint in the sense of Definition 4.2.8.

(a) Prove that if M and N are both representable, then F preserves tensor
products in the sense of Exercise 2.2.4.

194 CHAPTER 4. FIRST-ORDER LOGIC

(b) Extend G to a functor G : N →M.

(c) Define a 2-category of S-multicategories and show that G is right adjoint
to F in this 2-category (i.e. there are 2-cells η : 1→ GF and ε : FG→ 1 in
this 2-category satisfying the triangle identities).

Exercise 4.2.3. Let M and N be representable S-multicategories. Prove that
a functor F :M→N has a right adjoint in the sense of Definition 4.2.8 if and
only if (1) it preserves tensor products in the sense of Exercise 2.2.4 and (2) its
underlying ordinary functor has a right adjoint.

Exercise 4.2.4. Show that an S-multicategory M has binary products, in the
sense defined before Theorem 2.2.5, if and only if the diagonal M→M×M
has a right adjoint in the sense of Definition 4.2.8.

Exercise 4.2.5. Let P : Sop → Cat and suppose we have a commutative square
in S:

A
h //

f

��

C

g

��

B
k
// D.

such that f∗ and g∗ have left adjoints and also h∗ and k∗ have right adjoints.
Prove that P satisfies the left Beck-Chevalley condition with respect to this
square if and only if it satisfies the right Beck–Chevalley condition with respect
to the transposed square

A
f
//

h
��

B

k
��

C
g
// D.

Exercise 4.2.6. Let M and N be representable S-multicategories, and G :
M→N a functor preserving tensor products.

(a) Show that G has a Hopf left adjoint if and only if its underlying ordinary
functor has a left adjoint F such that the canonical map

F (A⊗GB)→ F (GFA⊗GB) ∼−→ FG(FA⊗B)→ FA⊗B

is an isomorphism for any A ∈ N and B ∈M.

(b) If M and N are additionally closed, and G is also closed in the sense that
the canonical maps G(A(B)→ GA(GB are isomorphisms, prove that
g has a Hopf left adjoint if and only if its underlying ordinary functor has a
left adjoint.

Exercise 4.2.7. Show that an S-multicategory M has binary coproducts, in
the sense defined before Theorem 2.2.6, if and only if the diagonalM→M×M
has a Hopf left adjoint.

4.5. INDEXED MONOIDAL CATEGORIES 195

Exercise 4.2.8. Let M and N be S-multicategories, let G : M → N be a
functor having a Hopf left adjoint, and assume that N has a unit object. Prove
that G also has a Hopf left adjoint at ().

Exercise 4.2.9. Suppose P : Sop → Heyt is a first-order S-hyperdoctrine as
defined in the text.

(a) Prove (using type theory or commutative diagrams, your choice) that in
fact the reindexing functor f∗ : P(∆)→ P(Γ) has a Hopf left adjoint for all
morphisms f : Γ→ ∆ in S. (Hint: in the hyperdoctrine of subsets over Set,
these left adjoints can be defined by f!(ϕ) = { y ∈ ∆ | ∃x ∈ Γ.(x ∈ ϕ ∧ f(x) = y) }.)

(b) Similarly, prove that f∗ has a right adjoint for all f .

(c) Prove that these left adjoints satisfy both Beck–Chevalley conditions for
commutative squares of the following form:

A
(1,f)

//

f

��

A×B

f×1

��

B
∆

// B ×B

A
∆ //

∆

��

A×A

1×∆

��

A×A
∆×1

// A×A×A

Exercise 4.3.1. Suppose given a finite-product theory in the sense of §2.9.
Then we can make it into a Horn theory by replacing its ≡ axioms with = axioms
(with empty proposition context). If S is any category with finite limits, prove
that models of the original finite-product theory in S correspond bijectively to
models of the Horn theory in SubS . In this sense, first-order logic subsumes
finite-product logic; see Exercise 4.3.6 for a further enhancement.

Exercise 4.3.2. Prove that every regular epimorphism (in any category) is an
extremal epimorphism.

Exercise 4.3.3. Prove that if S is a regular category and T is any finite-product
theory (see §2.9), then the category of T -models in S is also regular.

Exercise 4.3.4. Give an example of a regular category that is not a coherent
category.

Exercise 4.3.5. A (unique or orthogonal) factorization system on a cat-
egory S is a pair (E ,M) of classes of morphisms in S such that

(a) E and M are both closed under composition with isomorphisms;

(b) every morphism f in S factors as f = me where m ∈M and e ∈ E ; and

(c) if mh = ke with m ∈ M and e ∈ E , there exists a unique ` such that
m` = k and `e = h (as in Lemma 4.3.3(b)).

A factorization system is stable if E is stable under pullback (M is automatically
so), and proper if every morphism in E is an epimorphism and every morphism
in M is a monomorphism.

196 CHAPTER 4. FIRST-ORDER LOGIC

(a) Prove that if (E ,M) is a proper, stable, factorization system on a category
S with finite limits, there is a regular hyperdoctrine SubM where SubM(Γ)
is the sub-poset of SubS(Γ) consisting only of monomorphisms in M.

(b) If S additionally has finite coproducts that are stable under pullback, prove
that SubM(Γ) is a coherent hyperdoctrine.

(c) Show that both of the previous parts apply when S is the category of
topological spaces and M consists of the subspace inclusions.

(d) Is there an analogue of Lemma 4.3.7 for SubM?

Exercise 4.3.6. For any category S with finite products, define an S-indexed
poset SieveS by letting SieveS(Γ) be the poset of sieves on Γ. (A sieve on an
object Γ is a sub-functor of the representable functor S(−,Γ). More concretely,
it is a set of morphisms with codomain Γ, closed under precomposition with
arbitrary morphisms of S.)

(a) Prove that SieveS is always a first-order hyperdoctrine.

(b) If we make a finite-product theory into a Horn theory as in Exercise 4.3.1,
prove that models of the finite-product theory in S correspond bijectively
to models of the Horn theory in SieveS . Thus, first-order logic subsumes
finite-product logic even for categories having only finite products.

Exercise 4.3.7. Prove that in a regular category, the pullback functor f∗ :
Sub(∆) → Sub(Γ) has a left adjoint for every morphism f : Γ → ∆, and that
these left adjoints satisfy the Beck–Chevalley condition with respect to every
pullback square in S.

Exercise 4.3.8. Prove Lemma 4.3.8.

Exercise 4.3.9. Write out derivation trees for statements (b) and (c) in the
proof of Theorem 4.3.9. Feel free to use transitivity of equality as a (derivable)
rule, rather than writing it out explicitly in terms of =R.

Exercise 4.3.10. Rewrite the proof of the “if” direction of Theorem 4.3.4 using
regular logic rather than category theory.

Exercise 4.3.11. Prove Lemma 4.3.12.

Exercise 4.3.12. Prove using coherent logic that in a coherent category, any
morphism whose codomain is initial is an isomorphism.

Exercise 4.3.13. Prove using coherent logic that if we have monomorphisms
A� C and B� C in a coherent category, then the square

A ∩B //

��

B

��

A // A ∪B

is a pushout as well as a pullback. Conclude that if two objects of a coherent
category can be embedded as disjoint subobjects of some third object, then they

4.5. INDEXED MONOIDAL CATEGORIES 197

have a coproduct. (A coherent category in which this is true for any two objects
is called positive or extensive.)

Exercise 4.3.14. Let D be a distributive lattice that is not a complete lattice,
and let S be its free coproduct completion; the elements of S are set-indexed
families {ai}i∈I of elements of D, and the morphisms {ai}i∈I → {bj}j∈J are
functions f : I → J such that ai ≤ bf(i) for all i. Prove that SubS has the
structure to model the type operations ∧,>,∨,⊥, but not ∃.
Exercise 4.3.15. Give an example of a coherent category that is not a Heyting
category.

Exercise 4.3.16. Suppose S is a category with finite limits. Prove:

(a) If S has coequalizers that are stable under pullback, then it is a regular
category.

(b) If S has all finite colimits that are stable under pullback, then it is a coherent
category.

(c) If S has all finite colimits and is locally cartesian closed, then it is a Heyting
category.

Exercise 4.3.17.

(a) Show that the category of presheaves on any small category has finite limits
and colimits and is locally cartesian closed, hence is a Heyting category.

(b) Show that if S is locally cartesian closed with finite colimits, and T is a
reflective subcategory of S whose reflector preserves finite limits, then T is
also locally cartesian closed with finite colimits.

The categories obtained by applying (b) to (a) are called Grothendieck topoi.

204 CHAPTER 4. FIRST-ORDER LOGIC

Appendix A

Deductive systems

The purpose of this appendix is to explain the formal apparatus underlying type
theory from a mathematical perspective, giving precise meanings to words like
“judgment”, “rule”, “derivation”, and “binder”. This is rarely explained in detail,
yet in my experience the unfamiliar terminology is a large part of what makes
type theory difficult for mathematicians to understand.

Formally speaking, this appendix should come before chapter 1. However, its
technicalities seem unlikely to be appreciated without some concrete exposure to
the ideas that it is trying to explain, so I have placed it as an appendix instead.
I encourage the reader to skip back and forth between it and the main text as
needed.

I should say that probably not all type theorists would agree with the
meanings assigned herein to words like “judgment”. Constructive type theory
also has a philosophical/foundational aspect that I will not attempt to explain
or engage with. The purpose of this appendix, like that of the entire book, is to
explain type theory only in its role as a language for reasoning about categorical
structures, without meaning thereby to disparage its other roles or regard them
as unimportant.

A.1 Trees and free algebras

As remarked in §0.3, our perspective on type theory is that it presents free cate-
gorical structures in a particularly convenient way. Since categorical structures
are particular kinds of algebraic structures, it seems reasonable to think first
about what free algebraic structures look like in general. In this section we begin
by considering “algebras without axioms”.

A signature Σ is a set Σ1 of operations with a function ar : Σ1 → N
assigning to each operation a natural number1 called its arity. A Σ-algebra is

1Everything in this chapter works just as well if arities are arbitrary cardinal numbers
(except that in §A.3 we would require the axiom of choice). However, for simplicity we restrict
to the case of finite arities, since that is where our ultimate interest lies. On the other hand,

205

206 APPENDIX A. DEDUCTIVE SYSTEMS

a set A together with, for each m ∈ Σ1, a function [m] : Aar(m) → A. There is
an obvious notion of Σ-algebra morphism, forming a category.

Algebras over a signature are a very “primordial” sort of algebraic structure,
with arbitrary operations but no axioms allowed. For instance, if Σ1 = {e,m}
with ar(e) = 0 and ar(m) = 2, then Σ-algebras are pointed magmas: sets
equipped with a basepoint and a binary operation. We will see how to add
axioms in §A.3.

Free Σ-algebras are conveniently described in terms of trees. A tree is a set
whose elements are called nodes, together with a binary relation between them
called edge existence (a “relational graph”) that is connected and loop-free.
A tree is rooted if it is equipped with a chosen node called the root. In a
rooted tree every node x has a unique (non-retracing) path to the root; if x is
not the root, this path goes through a unique edge connected to x that we call
outgoing, and the node at the other end of that edge is the parent of x. The
non-outgoing edges connected to x are called incoming, and the nodes they
connect it to are called its children. A node is a descendant of x if its path
to the root passes through x, which is to say it is a child of a child of a. . . of x.
A node x together with all its descendants forms another rooted tree with x as
the root. A branch is a non-retracing path starting at the root; a rooted tree is
well-founded if there are no infinite branches.

If Σ is a signature, then a Σ-labeled tree is a rooted tree equipped with
a labeling function from nodes to Σ1, along with for every node x labeled
by m ∈ O, a bijection from the incoming edges of x to {1, . . . , ar(m)} (hence,
in particular, that there are exactly ar(m) such edges). There is an obvious
notion of isomorphism between labeled trees. We write WΣ for the set of all
isomorphism classes of well-founded Σ-labeled trees. (Note that WΣ is empty
unless there is at least one nullary operation.) Then WΣ has a Σ-algebra
structure defined as follows: given m ∈ Σ1 and a list of trees t1, . . . , tar(m), define
a tree [m](t1, . . . , tar(m)) with nodes {?} t

⊔
i ti, where ? is the root, with label

m, and its children are the roots of the trees ti.
The central fact is that WΣ is the initial Σ-algebra. We will give a classical

set-theoretic proof of this for the comfort of a certain kind of reader, but readers
of a different kind, or who already believe this fact, are welcome to skip the
proof. (From a constructive type-theoretic point of view, WΣ and its initiality
are sometimes a fundamental axiom not reducible to sets.)

Theorem A.1.1. Suppose P ⊆WΣ has the property that for any m and trees
t1, . . . , tar(m) such that each ti ∈ P , then also [m](t1, . . . , tar(m)) ∈ P . Then
P = WΣ.

Proof. Suppose not, so there is a well-founded Σ-labeled tree not in P . Let
m be the label of its root and t1, . . . , tar(m) its children; then our given tree
is (isomorphic to) [m](t1, . . . , tar(m)). By the contrapositive of our assumption,
therefore, there must be some i such that ti /∈ P . Iterating, we obtain an infinite
branch, contradicting well-foundedness.

there may certainly be infinitely many operations.

A.2. INDEXED TREES 207

Theorem A.1.2. For any Σ-algebra A, there is a unique Σ-algebra morphism
WΣ→ A.

Proof. TODO: standard argument.

Now that we have initial Σ-algebras, note that free Σ-algebras can be
constructed by a simple modification. Given Σ and any set X, define a new
signature Σ[X] by Σ[X]1 = Σ1 t X, where ar(x) = 0 for all x ∈ X. Then a
Σ[X]-algebra is just a Σ-algebra together with a map from X into its underlying
set, so the initial such algebra is exactly the free Σ-algebra on X. Thus, the
forgetful functor from Σ-algebras to sets has a left adjoint.

A different way to express Theorem A.1.2 is that given an arbitrary set A,
to define a function WΣ → A it suffices to define a Σ-algebra structure on A.
This may seem like a trivial reformulation, but it better reflects the way we use
it to describe type theories.

In yet other words, we may define a function f : WΣ → A by specifying
f([m](t1, . . . , tar(m))) for each m, assuming recursively that f(t1), . . . , f(tar(m))
have already been defined. Formally this is the same as specifying a Σ-algebra
structure on A — the definition of “f([m](t1, . . . , tar(m)))” given the “values of
f(t1), . . . , f(tar(m))” is precisely the action [m] on A — but it often matches our
thought processes best.

Exercises

Exercise A.1.1. Prove that a well-founded Σ-labeled tree has no nonidentity
automorphisms. Thus, the passage to isomorphism classes in the definition of
WΣ is “categorically harmless”.

Exercise A.1.2. Exhibit a signature Σ such that WΣ ∼= N and Theorem A.1.1
reduces to ordinary mathematical induction.

A.2 Indexed trees

The signatures and algebras in §A.1 have only one underlying set, or sort, but
sometimes algebraic structures have more than one sort. As a simple example,
we could consider a set together with a group acting on that set to be a single
algebraic structure; then the group and the set are two sorts.

Categories could be regarded as having two sets, namely objects and arrows;
but it is generally better to treat them differently. Specifically, for a fixed set O,
we regard categories with object set O as an algebraic structure whose set of
sorts is O ×O. Thus each hom-set is a separate sort, and each triple A,B,C
gives a different binary composition operation

◦A,B,C : (hom(B,C),hom(A,B))→ hom(A,C)

This may seem a little odd, but as we will see it makes sense.

208 APPENDIX A. DEDUCTIVE SYSTEMS

To deal with multi-sorted algebraic structures in general, we augment our
signatures with a set Σ0 of sorts together with, for each operation m ∈ Σ1, an
output sort cm ∈ Σ0 and also a list of input sorts dm,1, . . . , dm,ar(m). For
brevity we write such an operation as m : (dm,1, . . . , dm,ar(m)) → cm. From
now on we call these multi-sorted signatures simply signatures; the simpler
signatures of §A.1 we re-christen one-sorted signatures. (In fact, a multi-
sorted signature is essentially the same as a “multigraph”, Definition 2.2.1.)

For a multi-sorted signature Σ, a Σ-algebra is a Σ0-indexed family of sets
{Ai}i∈Σ0

together with for each m ∈ Σ1 a function Adm,1
×· · ·×Adm,ar(m)

→ Acm .
For instance, if Σ0 = {g, s} and Σ1 = {m, t} withm : (g, g)→ g and t : (g, s)→ s,
then an indexed algebra consists of two sets Ag and As, a binary operation on
Ag, and an action of Ag on As.

Similarly, we define a Σ-labeled tree as before, with the additional require-
ment that if x is the kth child of y, and x is labeled by m ∈ Σ1 while y is
labeled by p ∈ Σ1, then cm = dp,k. For each i ∈ Σ0, let WΣi be the set of
isomorphism classes of Σ-labeled trees for which the output sort of the root is
i. Then {WΣi}i∈Σ0

has a similar tautological Σ-algebra structure, and is the
initial one.

Exercises

Exercise A.2.1. Prove that {WΣi}i∈Σ0
is the initial Σ-algebra.

A.3 Free algebras with axioms

Of course, most algebraic structures of interest contain axioms as well as oper-
ations; for instance, multiplication in a group or monoid must be associative
and unital. The free monoid on a set X is naturally regarded as a quotient of
the free pointed magma on X that forces associativity and unitality to hold.
It turns out that we can construct free algebras of this sort quite generally by
defining an equivalence relation as another indexed free algebra.

Making this completely precise in general is a bit technical, so we will begin
with a concrete example. Suppose we want to generate the free semigroup on
a set X. Let FMagX denote the free magma on X, constructed as in §A.1. (A
magma is a set with a single binary operation; a semigroup is a magma whose
operation is associative.)

Now define a signature Σ≡ with Σ≡0 = FMagX × FMagX and the following
operations.

� For each x ∈ FMagX, a nullary operation ()→ (x, x).

� For each x, y ∈ FMagX, a unary operation ((x, y))→ (y, x).

� For each x, y, z ∈ FMagX, a binary operation ((x, y), (y, z))→ (x, z).

� For each x, y, z, w ∈ FMagX, a binary operation

((x, y), (z, w))→ (x · z, y · w),

A.3. FREE ALGEBRAS WITH AXIOMS 209

where · denotes the binary magma operation on FMagX.

� For each x, y, z ∈ FMagX, a nullary operation

()→ (x · (y · z), (x · y) · z).

An algebra for this signature is an (FMagX × FMagX)-indexed family of sets
R(x, y) equipped with elements and operations

ex ∈ R(x, x)

R(x, y)→ R(y, x)

R(x, y)×R(y, z)→ R(x, z)

R(x, y)×R(z, w)→ R(x · z, y · w)

ax,y,z ∈ R(x · (y · z), (x · y) · z)

Now for any such R, “R(x, y) is nonempty” is a binary relation on FMagX,
which we abusively denote also by R(x, y). The above elements and operations
imply that this is an equivalence relation that is a congruence for the magma
operation and moreover relates x · (y ·z) to (x ·y) ·z for all x, y, z. And conversely,
if we have any such binary relation ∼, we can construct an indexed algebra R
by setting R(x, y) = 1 if x ∼ y and R(x, y) = ∅ otherwise.

Let ≡ denote the binary relation obtained as above from nonemptiness of
the initial algebra for this indexed signature.

Theorem A.3.1. The quotient of FMagX by ≡ is the free semigroup generated
by X.

Proof. First we show that it is a semigroup. Given u, v ∈ FMagX/≡, choose
representatives x, y ∈ FMagX for them, and let u · v be the equivalence class of
x · y. Since ≡ is a congruence for the magma operation, the result is independent
of the choice of representatives; thus FMagX/≡ is a magma. Now given u, v, w ∈
FMagX/≡, choose representatives x, y, z; then since x · (y · z) ≡ (x · y) · z, we
have u · (v · w) = (u · v) · w. Thus FMagX/≡ is a semigroup

Now let M be any other semigroup and ψ : X → M a map. Since M
is in particular a magma, we have a unique induced magma morphism φ :
FMagX → M . Define a binary relation R on FMagX by saying that R(x, y)
means φ(x) = φ(y). Since φ is a magma morphism and M is a semigroup, R can
be regarded as an algebra for the above indexed signature. Thus it admits a map
from the initial such algebra. Hence, if x ≡ y, then R(x, y), i.e. φ(x) = φ(y); so φ
factors through FMagX/≡. It is straightforward to check that this factorization
is a semigroup morphism and is the unique such extending ψ.

In the general case, we proceed as follows. Suppose Σ is a (multi-sorted)
signature and we have additionally a set Λ of axioms, each of which is a pair
(a, b) of elements of the free algebra WΣ[V]i for some i ∈ Σ0 and some finite
set V . Then for any Σ-algebra A, any axiom a, b ∈WΣ[V]i, and any function
g : V → A (picking out some finite set of elements of A), we have an induced

210 APPENDIX A. DEDUCTIVE SYSTEMS

Σ-algebra map g : WΣ[V]→ A. We define a (Σ,Λ)-algebra to be a Σ-algebra
A such that g(a) = g(b) for any (a, b) ∈ Λ and g : V → A.

For instance, associativity in a magma is represented by the axiom
m

x m

y z

,

m

m z

x y

 ∈WΣ[{x, y, z}]

The (Σ,Λ)-algebras in this case are exactly semigroups.
Now, given a set X, we define a signature Σ≡ with

Σ≡0 = { (i, x, y) | i ∈ Σ0;x, y ∈WΣ[X]i }

and the following operations:

� For each x ∈WΣ[X]i, a nullary operation ()→ (i, x, x).

� For each x, y ∈WΣ[X]i, a unary operation ((i, x, y))→ (i, y, x).

� For each x, y, z ∈WΣ[X]i, a binary operation ((i, x, y), (i, y, z))→ (i, x, z).

� For each operation m : (dm,1, . . . , dm,ar(m))→ cm in Σ, and each collection
of pairs of elements xk, yk ∈WΣ[X]dm,k

for 1 ≤ k ≤ ar(m), an operation

((dm,1, x1, y1), . . . , (dm,ar(m), xar(m), yar(m)))

−→ (cm, [m](x1, . . . , xar(m)), [m](y1, . . . , yar(m))).

� For each axiom a, b ∈WΣ[V]i in Λ and each function g : V →WΣ[X] with
unique extension g : WΣ[V]→WΣ[X], a nullary operation

()→ (i, g(a), g(b)).

Let ≡i be the binary relation on WΣ[X]i defined by a ≡i b if the sort (i, a, b) is
nonempty in the initial Σ≡-algebra.

Theorem A.3.2. Each ≡i is an equivalence relation and a congruence for the Σ-
algebra structure, and the quotients WΣ[X]i/≡i form the free (Σ,Λ)-algebra.

As in §A.1, we will usually think of this theorem slightly differently: to
define a family of maps fi : WΣ[X]i/≡i → Ai, it suffices to define each
fcm([m](t1, . . . , tar(m))) assuming recursively that fdm,1

(t1), . . . , fdm,ar(m)
(tar(m))

have been defined, and also to check that for any axiom (a, b) ∈ WΣ[V]i and
g : V →WΣ[X]i we have fi(g(a)) = fi(g(b)).

Exercises

Exercise A.3.1. Prove Theorem A.3.2.

Exercise A.3.2. Why is the axiom of choice required to generalize Theorem A.3.2
to the case of infinitary operations?

A.4. RULES AND DEDUCTIVE SYSTEMS 211

A.4 Rules and deductive systems

The basic machinery of type theory is an iteration and reformulation of the
preceding sections in different language, simultaneously introducing convenient
notations.

We consider a sequence of signatures Σ(1),Σ(2), . . . ,Σ(n) for which the sorts of
Σ(k) are defined in terms of the initial algebras WΣ(j) for the previous signatures

j < k. For instance, we might have Σ
(2)
0 = WΣ(1) ×WΣ(1). A particularly

important special case is when Σ(k) is (Σ(j))≡ for some j < k and some set of
axioms, as in §A.3.

Each sort in one of the signatures Σ(k) is called a judgment. We write
J for a generic judgment, but we use more specific and congenial notation in
particular cases, such as:

� When categories with object set O are regarded as an (O × O)-sorted
theory as mentioned in §A.2, the sort (A,B) is usually written A ` B. This
signature (with an ≡ on top of it) corresponds to the cut-ful type theory for
categories from §1.2.1. The cut-free type theory for categories has different
operations but the same sorts, and uses the same notation.

� If Σ(1) is a one-sorted signature regarded as describing the objects of some
categorical structure, then we denote its sort by “type”. We generally then

have Σ
(2)
0 = WΣ(1) ×WΣ(1) (for a unary type theory), with sorts again

written as A ` B, where now A and B are elements of the initial Σ(1)-algebra
rather than elements of a fixed set O.

� The multicategorical and polycategorical theories of chapters 2 and 3 use a
similar notation Γ ` ∆ for sorts (Γ,∆) where one or both of Γ and ∆ is a
list rather than a single item.

� If Σ(k) = (Σ(j))≡, then its sort (J , x, y) is usually written x ≡ y : J .

In general, each operation m : (J1, . . . ,Jn) → J ′ in one of the signatures
Σ(k) is called a rule, and written

J1 · · · Jn
J ′

m
.

The input judgments J1, . . . ,Jn of a rule are called its premises, and the output
judgment J ′ is called its conclusion.

Finally, each element of WΣ(k) is called a derivation (sometimes a derivation
of its root judgment) and written by placing rules on top of each other to form
its tree structure. For instance, if J denotes the single sort of the signature for
semigroups, then the associativity axiom of a monoid is

J
x

J
y

J
z

J
m

J
m

≡

J
x

J
y

J
m

J
z

J
m

212 APPENDIX A. DEDUCTIVE SYSTEMS

Note the rules with empty premises, corresponding to nullary operations. Simi-
larly, for the cut-ful type theory for categories, associativity is the collection of
axioms (one for each A,B,C ∈ O)

A ` B
x

B ` C
y

C ` D
z

B ` D
◦B,C,D

A ` D
◦A,B,D

≡

A ` B
x

B ` C
y

A ` C
◦A,B,C

C ` D
z

A ` D
◦A,C,D

The whole sequence of signatures Σ(1),Σ(2), . . . ,Σ(n) is called a deductive
system. Thus, for instance, the signature Σ[X] for semigroups under a fixed set
X, together with the axiom-signature for monoids under X on top of it, form a
single deductive system. Some deductive systems (probably not all) deserve to
be called type theories; but we will not attempt to give any definition of this
class except by the examples we consider (throughout the entire book).

Remark A.4.1. To be sure, not all type theories fit exactly into the picture
presented here. In particular, dependent type theories break the clean “stratifica-
tion” of a deductive system Σ(1),Σ(2), . . . ,Σ(n), since in the judgment ` A type
the type A can now contain terms from the “higher level” judgment Γ `M : B.
Thus the whole system must be defined by one big mutual induction (in type-
theoretic lingo it is an “inductive-inductive definition”). The general idea is
similar, however.

A.5 Terms

Since the judgments in each signature Σ(k) in a deductive system are defined in
terms of the elements of WΣ(j) for j < k, and the latter are rooted trees, the
notation would rapidly get unwieldy if each J in a rule contained within it some
number of derivation trees. Thus, we generally represent derivations by terms,
which are a more concise syntax containing enough information to reconstruct
the derivation. For instance, the expressions x · (y · z) and (x · y) · z for the two
sides of associativity are terms, in which we have represented the rule m by an
infix operation “·”.

If M is a term representing a derivation of the judgment J , we generally
write M : J . (A notable exception is that if J is the sort of a one-sorted
Σ(1) presenting the objects of a category, as mentioned above, we usually write
“A type” or “` A type” rather than “A : type”.) We describe a syntax for terms
by annotating the rules of a deductive system with terms, so that for instance

A.5. TERMS 213

the multiplication of a semigroup would be

M : J N : J
M ·N : J

m

Here M and N are “metavariables” standing for terms, indicating that whatever
terms we have representing two derivations of J , we represent their combination
by m by juxtaposing them with an infix dot. (We always assume that parentheses
are added as necessary to ensure correct grouping.)

For purposes of this discussion, “terms with variables from the context” such
as x : A ` M : B can be regarded as merely a variant notation of something
like x.M : (A ` B). Thus we still have a single thing (namely x.M) that
represents the entire derivation, even though we generally apply the word “term”
only to part of this thing (namely M). Similarly, an equality judgment like
x : A ` M ≡ N : B is shorthand for (x.M) ≡ (x.N) : (A ` B). There is one
actual difference here in that we generally consider terms of this form modulo
“α-equivalence”, i.e. the consistent renaming of variables. For now, let us assume
that we know what that means; in §A.6 we will explain it precisely.

There is no unique way to assign terms to a deductive system; all that is
necessary is to describe some kind of syntax from which a derivation tree can be
algorithmically extracted. When a human mathematician reads an expression
such as x · (y · z), they generally mentally organize it as a tree without really
thinking about it: here the first ·, being the “outer” operation, is the root, with
children x and y · z, and the latter decomposes further into another · node with
children y and z. This “internal syntax tree” has exactly the same shape as the
intended derivation tree. An alternative reading where the second · is the root
with children “x · (y” and “z)” is ruled out by our intuitive understanding of the
meaning of parentheses. When a computer reads such an expression it likewise
constructs an internal tree representation, but the programmer has to explicitly
instruct it how to do so; this is called parsing.

If we are given a putative term claiming to represent a derivation of some
judgment, then after parsing there is a further step of verifying that the “parse
tree” indeed corresponds to a valid derivation tree. This is called type-checking.
Technically it could be done at the same time as parsing, but both human and
electronic mathematicians generally separate them. Thus the parse tree is a
sort of “raw abstract syntax” that knows how operations are grouped but not
whether the operations actually mean anything yet.

We will not say anything more about parsing; we trust the human reader to
do it unconciously and the programmer to have good algorithms for it. Thus, in
our formal description of terms, the mathematical objects we call “terms” will be
representations of parse trees. And as trees, they will be elements of some other
free algebra — but a simpler one than the one whose derivations we are using
them to represent. For instance, for the cut-ful type theory of categories under
G, whose judgments are of the form A ` B for A,B ∈ G0 (and in particular there
are G0×G0 of them), the terms will be elements of a one-sorted free algebra with
a nullary operation idA and a binary operation ◦A for each A ∈ G0. Thus this

214 APPENDIX A. DEDUCTIVE SYSTEMS

free algebra contains many “ill-typed” terms such as g ◦B idA where g ∈ G(C,D);
the goal of type-checking is to discard these undesirables. (For technical reasons,
rather than a single set of terms as here, in the general case we will allow each
judgment of our intended theory to be assigned a different set of “potential
terms”; see below.)

Now in practice, the input to type-checking is usually a parsed term together
with a putative type for that term, and so the term notations only need to contain
enough information to reconstruct the derivation tree when supplemented with
the latter. For instance, we have noted that the cut-ful type theory for categories
technically involves a different composition operation ◦A,B,C for each triple of
objects, so that terms would technically have to be written as h◦A,C,D (g◦A,B,C f).
However, if we are given a term whose outer operation is a composition and
that claims to represent a derivation of a judgment A ` D, then the composition
must be ◦A,?,D. Thus in general it suffices to indicate the object being composed
over, as in h ◦C (g ◦B f).

Remark A.5.1. In many cases we can omit further information because it can
be inferred from context; for instance, if we know that h : C → D then a
term of the form “h ◦ (−)” can only mean “h ◦C (−)”. Human mathematicians
omit information informally and unsystematically, and we have done the same
throughout the book. The implementors of electronic mathematicians have
elaborate and precise algorithms for “inferring from context” enabling the
omission of information, but most of these are far beyond our scope.

With type-checking (and also “proof search”) in mind, type theorists tend to
read the rules of a deductive system “bottom-up”. That is, instead of thinking
of a rule

J1 J2

J

as meaning “if we have J1 and J2 we can deduce J ”, they instead think “if we
want to deduce J , it suffices to have J1 and J2”. This is the direction that a
type-checking algorithm applies the rule: given a parsed term M and a putative
judgment J , the rule tells us how to break down the job of checking that M : J
into simpler type-checking tasks that can be done recursively.2 It is also the
direction that the rule is often applied when searching for a derivation of J , by
the same sort of recursive procedure.

With all of this in mind, we make the following formal definition.

Definition A.5.2. Let Σ be a signature; a term system for Σ is a Σ-algebra
T, whose elements are called (potentially ill-typed) terms, such that

(a) For any judgment c ∈ Σ0 and term t ∈ Tc, there is at most one rule
m : (d1, . . . , dn)→ c and terms sj ∈ Tdj such that t = [m](s1, . . . , sn).

2However, some more advanced theories are type-checked in a “bidirectional” way, with
some judgments being read upwards in this way and others being read downwards as “type
synthesis”, where only the term is given and the type is inferred by the algorithm.

A.5. TERMS 215

(b) If we define a relation s ≺ t on
⊔
i Ti to hold just when t = [m](s1, . . . , sn)

and s = sj for some j, then ≺ is well-founded: there are no infinite chains
t1 � t2 � t3 � · · · .

Since a term system T is a Σ-algebra, there is a unique Σ-algebra morphism
WΣ→ T. This is the function that assigns to each derivation a unique repre-
senting term. Axiom (a) above ensures that a derivation is determined by its
term:

Lemma A.5.3. If T is a term system, then the unique Σ-algebra morphism
WΣ→ T is injective.

Proof. Let x, y ∈WΣi have the same image in Ti. By axiom (a), and the fact
that WΣ→ T is a Σ-algebra morphism, we must have x = [m](x1, . . . , xn) and
y = [m](y1, . . . , yn) for the same operation m and each pair xj , yj having the
same image in T. By structural induction, therefore, each xj = yj , and thus
x = y.

However, the converse of Lemma A.5.3 does not hold. Indeed, its conclusion
does not even imply axiom (a) (which is all that was used in its proof): the
former is only about “globally” well-typed terms, while the latter is a “local”
condition that says something even about ill-typed terms.

The reason for the extra strength of (a), and for condition (b), is to make type-
checking a “deterministic terminating recursive algorithm”, as follows. Given
a term t, we check whether it is of the form [m](s1, . . . , sn). If so, then by (a)
m and the sj ’s are uniquely determined, and we can recursively consider each
sj . If the answer is ever no, then the term t is ill-typed. Otherwise, axiom (b)
ensures that the algorithm must terminate (by bottoming out at nullary rules),
and we have now constructed a derivation (the tree of rules m) represented by
the term t.

In the main text, we generally stated our “terms are derivations” lemmas
in the simple form of “if a term judgment is derivable, then it has a unique
derivation.” As stated this is only the conclusion of Lemma A.5.3, but in all
cases our proofs had the simple inductive form that actually establishes all of
Definition A.5.2.

Of course, for this to actually be an algorithm in the computer science
sense, the test for whether t = [m](s1, . . . , sn) would have to be “computable”.
Making that precise is far beyond our current scope, but it may be worth
mentioning that it generally holds because T is constructed using an initial
algebra for some other signature, and initial algebras are very computable (they
are “abstract datatypes”). Such a construction of T generally also ensures
axiom (b) immediately.

Notationally, we regard the common “annotation of rules” as specifying a
signature along with a term syntax for it. For instance, when we annotate the
composition rule in the cut-ful type theory of categories

A ` B B ` C
A ` C

216 APPENDIX A. DEDUCTIVE SYSTEMS

by terms to get
φ : (A ` B) ψ : (B ` C)

ψ ◦B φ : (A ` C)

we mean that if m is this rule, then the corresponding operation [m] on T is given
by the operation (− ◦B −). Technically, this requires us to specify in advance
the set (or sets) T of terms, so that the annotated rules are describing which
previously existing operations on T we are using to represent each rule. However,
since in most cases T is a free algebra for a different signature with an operation
corresponding directly to each rule in Σ (though not in a one-to-one manner), we
can generally omit this preliminary step and assume that T is freely generated
as necessary by the operations named in the annotations.

A.6 Variable binding and α-equivalence

Finally, we come to the vexing question of α-equivalence. We could wave our
hands at it by claiming to use de Bruijn variables everywhere, but this would be
a bit dishonest. As is evident, we actually do use named variables all over the
place, so it behooves us to say something about what they mean. In this section
we will describe a general way to construct “terms with binders” such as match
and λ and define a notion of α-equivalence. There are many ways to do this;
our approach follows [GP99, GP02, PG00] (see also [Cro12]).

Let A be a fixed infinite set (usually countable), whose elements we call
variables. Let Σ be a signature, one-sorted for simplicity, together with injective
functions v, b : A → Σ1 such that ar(v(x)) = 0 and ar(b(x)) = 1 for all x ∈ A.
What we have in mind is that the initial Σ-algebra will supply the set of terms in
a term syntax for some other signature, with the operations of Σ corresponding
to the term notations for the rules in that other signature.

The inclusion v simply says that variables can occur in terms, while the
operation b(x) is intended to “bind” the variable x in its argument; usually
b(x)(M) is written x.M . When term notations bind variables, their corresponding
operations will put a specially named Σ-operation together with one or more
uses of b. For instance, when describing the terms in the unary type theory for
categories with coproducts, there will be operations matchA+B of arity 3, which
we combine with two uses of b to represent the terms annotating +E:

matchA+B(M,u.P, v.Q) = matchA+B(M, b(u)(P), b(v)(Q)).

As usual, let WΣ be the initial Σ-algebra; and let Aut(A) be the group of
automorphisms (permutations) of the set A. We write the action of σ ∈ Aut(A)
on x ∈ A by xσ. Now we define, by recursion, an action of Aut(A) on WΣ as
follows:

σ · [v(x)] = [v(xσ)]

σ · [b(x)](M) = [b(xσ)](σ ·M)

A.6. VARIABLE BINDING AND α-EQUIVALENCE 217

with σ ·M defined recursively in the latter. In all other cases, σ · (−) simply
recurses into all subtrees. It is easy to show that this is a group action.

Because all operations in Σ have finite arity3 and all trees in WΣ are well-
founded, only finitely many variables can occur in any such tree (either through
v or b). So, since A is infinite, for any M ∈ WΣ there is some variable z ∈ A
that does not occur in M . We call such a z fresh (relative to M) and write
z /∈M .

We now define α-equivalence ≡ on WΣ, by defining a new signature Σ≡

similar to how we did it in §A.3. We include operations making ≡ a congruence
for all operations of Σ except b. In the case of v, this means we have “reflexivity
at variables” v(x) ≡ v(x). We also include one further operation that in rule
form looks like this:

z /∈M z /∈ N z 6= x z 6= y (zx) ·M ≡ (zy) ·N
b(x)(M) ≡ b(y)(N)

(A.6.1)

Here (zx) and (zy) denote the transposition permutations that swap z with x
and z with y, respectively. Since z does not occur in M and N , the permutation
actions (zx) ·M and (zy) ·N amount to replacing all occurences of x in M and
y in N (even bound ones) by z. The rule then says that if these two results are
α-equivalent, then so are the terms x.M and y.N with new bound variables.

For instance, x.x and y.y are α-equivalent because (zx)·x = z and (zy)·y = z.
We also have x.(x.x) ≡ x.(y.y) because (zx) ·(x.x) = (z.z) and (zy) ·(y.y) = (z.z)
as well, so the inner bound x really does “shadow” the outer one, making the
latter invisible even though it has the same name. But neither of these is
equivalent to x.(y.x), since (zx) · (y.x) = (y.z).

Note also that if M ∈WΣ, then x.M is α-equivalent to y.((yx) ·M) for any
variable y not occurring in M , since if neither y nor z occur in M then

(zy) · (yx) ·M = (yx) · (zx) ·M = (zx) ·M.

Thus, we can always replace a bound variable by any another fresh variable.
Unlike in §A.3, we do not explicitly include operations making ≡ an equiva-

lence relation. However, we can nevertheless prove that it is; this is itself a sort
of cut-admissibility.

Lemma A.6.2. α-equivalence ≡, as defined above, has the following properties:

(a) Equivariance: if M ≡ N , then σ ·M ≡ σ ·N for any σ ∈ Aut(A).

(b) Congruence for binding: if M ≡ N , then x.M ≡ x.N .

(c) Rule (A.6.1) is invertible: if x.M ≡ y.N , then (zx) ·M ≡ (zy) ·N for some
fresh z.

(d) Reflexivity: M ≡M for any M ∈WΣ.

3If Σ were allowed to contain infinitary operations, then to make this work, the cardinality
of A would have to be of cofinality greater than any of their arities.

218 APPENDIX A. DEDUCTIVE SYSTEMS

(e) Symmetry: if M ≡ N then N ≡M .

(f) Transitivity: if M ≡ N and N ≡ P , then M ≡ P .

(g) Bound variables can be altered freely: if z /∈M then x.M ≡ z.((zx) ·M).

Proof. Perhaps surprisingly, the tricky and important one is (a). Of course, the
proof is by induction on the derivation of M ≡ N , and all the congruence rules
are immediate, so it remains to deal with (A.6.1). That is, suppose x.M ≡ y.N is
obtained from (zx)·M ≡ (zy)·N , and let σ ∈ Aut(A). Now σ·(x.M) = xσ.(σ·M)
and similarly for N , so to conclude σ · (x.M) ≡ σ · (y.N) it will suffice to show
(wxσ) · σ ·M ≡ (wyσ) · σ ·N for some fresh w. The obvious choice for w is zσ.
Then if we let τ = (zσyσ)σ(zx) ∈ Aut(S), we have

(zσxσ) · σ ·M = τ · (zx) ·M
≡ τ · (zy) ·N
= (zσyσ) · σ ·N

using the inductive hypothesis of equivariance for (zx) ·M ≡ (zy) ·N .
Now (b) is immediate, sinceM ≡ N implies (zx)·M ≡ (zx)·N , whence (A.6.1)

gives x.M ≡ x.N . And (c) is clear since (A.6.1) is the only rule that can produce
an α-equivalence between terms of the form x.M and y.N (since we did not
include (b) or (d)–(f) as primitive). Combining the primitive congruence rules
with (b) yields straightforward inductive proofs of (d) and (e).

For (f) we induct on both M ≡ N and N ≡ P . By inspection of the form of
N , they must both be derived from the same rule. If it is a primitive congruence
rule, we just apply the inductive hypothesis to all the inputs and then congruence
again. The interesting case is (A.6.1), where we have (ux) ·M ≡ (uy) ·N and
also (vy) ·N ≡ (vz) · P for potentially different variables u and v, with u fresh
for M,N, x, y and v fresh for N,P, y, z. Since A is infinite there exists a variable
w that is fresh for all of M,N,P, x, y, z, and so we have

(wx) ·M = (wu) · (ux) ·M ≡ (wu) · (uy) ·N = (wy) ·N

using (a). Similarly, (wy) · N ≡ (wz) · P , so we ought to be able to conclude
by the inductive hypothesis that (wx) · M ≡ (wz) · P and so x.M ≡ z.P
by (A.6.1). However, this is not the usual structural inductive hypothesis, since
the derivations of and (wx) ·M ≡ (wy) ·N and (wy) ·N ≡ (wz) ·P are produced
by (a) and are not subtrees of our given derivations of x.M ≡ y.N and y.N · z.P .
Instead we have to do something like assign a natural number “height” to all
derivations, observe that (a) preserves the height of derivations, and then induct
on height.

Finally, for (g) we choose a fresh w and observe that (wx)·M = (wz)·(zx)·M .
Thus, by reflexivity (d) we have (wx) ·M ≡ (wz) · (zx) ·M and hence by (A.6.1)
x.M ≡ z.((zx) ·M).

The quotient WΣ/ ≡ of this equivalence relation is, of course, our set of
“terms modulo α-equivalence of bound variables”. Since ≡ is a congruence

A.6. VARIABLE BINDING AND α-EQUIVALENCE 219

for all the operations of Σ, these all descend to the quotient, including (by
Lemma A.6.2(b)) variable binding; we also denote this operation by x.M where
now M ∈WΣ/ ≡.

Our goal is to use this quotient as the term syntax for another signature.
In practice we will write terms as elements of WΣ itself, but we regard them
formally as representing their equivalence class. We also usually want to restrict
to some subsets of terms that have the right number of variables bound to
represent the context.

For instance, in unary type theories (chapter 1) we have said that a term
judgment such as x : A ` M : B can be read as x : M : (A ` B). We really
do want this x to be a bound variable in the formal sense of this section, since
derivations to determine unique terms we have to quotient by renaming the
variables in the context as well. That is, we represent “free” variables as variables
that are bound “on the outside”. Thus, we should take our set T of terms to be
the subset of WΣ/ ≡ consisting of terms having a variable binding outermost.
Similarly, in a simple type theory (chapter 2) the terms for Γ ` B should have n
variable bindings outermost, where n is the length of Γ (this is why in §A.5 we
allowed different judgments to have different sets of potential terms).

We then need to define operations on these sets T that represent the rules of
our desired signature. These will generally be constructed from basic operations
in Σ combined with one or more variable bindings.

Let us consider match+ from §1.5 as a paradigmatic example. Since the rule
+E has three premises, what we have to give is an operation T × T × T → T,
where T is the set of α-equivalence classes of terms of the form x.M . We have
presumably included “match+” as a 3-ary operation in our term signature Σ, but
this does not take account yet of the binding structure. The inputs to our desired
operation will be (given the above restriction defining T) of the form x.M , u.P ,
and v.Q. The basic 3-ary operation in Σ could give match+(x.M, u.P, v.Q), but
of course we want “x.match+(M,u.P, v.Q)” instead.

To define this, we first choose representatives for the equivalence classes of
x.M , u.P , and v.Q. By Lemma A.6.2(g) we can do this so that x does not appear
in u.P or v.Q (which have only finitely many variables each). Now we can write
x.match+(M,u.P, v.Q); but for this to define an operation T× T× T → T we
have to check that it is independent of the chosen representatives. For u.P and
v.Q this is easy since ≡ is a congruence for all operations of Σ, including match+.
And if x.M ≡ y.N , then by Lemma A.6.2(c) we have (zx) ·M ≡ (zy) · N for
some z, which we may also take to not appear in u.P or v.Q. Thus, using the
congruence rules and transitivity, we have

x.match+(M,u.P, v.Q) ≡ z.match+((zx) ·M,u.P, v.Q)

≡ z.match+((zy) ·N, u.P, v.Q)

≡ y.match+(N, u.P, v.Q).

The same principle applies to all other term systems using variable binding.
Sometimes we also need to poke down into all the terms to ensure that certain
variables in their context are disjoint or equal. For instance, the term operation

220 APPENDIX A. DEDUCTIVE SYSTEMS

representing ×I takes as given x.M and y.N , but its output has only one shared
variable. Thus we have to first note x.M ≡ z.((zx)·M) and y.N ≡ z.((zy)·N) for
some z that is fresh for both, and then write z.〈(zx) ·M, (zy) ·N〉 for the pairing
term. Based on these examples, we trust that the reader could formulate precise
definitions of all the terms used in this book as operations on α-equivalence
classes.

Of course, in any particular case it is still (technically) necessary to prove
that what we get is a term system in the sense of Definition A.5.2. Since T is
a subset of an initial algebra, and our operations are built using at least one
operation of that algebra, A.5.2(b) is straightforward. Finally, the proof of
A.5.2(a) essentially means checking that we chose the operations of the term
signature to contain enough information to reconstruct a derivation step-by-step.
This is a formal version of what in the main text we called type-checking is
possible or terms are derivations. Note that since all our “terms” are actually
α-equivalence classes, we never have to prove anything about α-equivalence.

Bibliography

[Awo06] Steve Awodey. Category theory, volume 49 of Oxford Logic Guides. The
Clarendon Press Oxford University Press, New York, 2006. 17

[Bae04] John Baez. Why n-categories? http://www.math.ucr.edu/home/

baez/n_categories/why.pdf, 2004. 88

[Bat98] M.A. Batanin. Computads for finitary monads on globular sets, 1998.
64, 74

[BKP89] R. Blackwell, G. M. Kelly, and A. J. Power. Two-dimensional monad
theory. J. Pure Appl. Algebra, 59(1):1–41, 1989. 55, 56, 82, 83

[Bur71] Albert Burroni. T -catégories (catégories dans un triple). Cahiers
Topologie Géom. Différentielle, 12:215–321, 1971. 16, 87

[Cro12] Roy L. Crole. Alpha equivalence equalities. Theoretical Computer
Science, 433:1 – 19, 2012. 216

[CS10] G.S.H. Cruttwell and Michael Shulman. A unified framework for
generalized multicategories. Theory Appl. Categ., 24:580–655, 2010.
arXiv:0907.2460. 16, 17, 87

[Doš99] Kosta Došen. Cut elimination in categories. Springer, 1999. 13

[DP07] Kosta Došen and Zoran Petrić. Relevant categories and partial functions.
Publications de l’Institut Mathématique, Nouvelle Série, 82(96):17–23,
2007. 115, 120, 153

[Gar10] Richard Garner. Homomorphisms of higher categories. Advances in
Mathematics, In Press, Corrected Proof:–, 2010. 64, 74

[Gol84] Robert Goldblatt. Topoi, volume 98 of Studies in Logic and the Foun-
dations of Mathematics. North-Holland Publishing Co., Amsterdam,
second edition, 1984. The categorial analysis of logic. 12

[GP99] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax
involving binders. In Proceedings of the 14th Annual Symposium on
Logic in Computer Science, LICS’99, pages 214–224, Trento, Italy, 1999.
IEEE Computer Society Press. 216

221

http://www.math.ucr.edu/home/baez/n_categories/why.pdf
http://www.math.ucr.edu/home/baez/n_categories/why.pdf

222 BIBLIOGRAPHY

[GP02] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with
variable binding. Formal Aspects of Computing, 13:341–363, 2002. 216

[Her00] Claudio Hermida. Representable multicategories. Adv. Math.,
151(2):164–225, 2000. 91

[Her01] Claudio Hermida. From coherent structures to universal properties. J.
Pure Appl. Algebra, 165(1):7–61, 2001. 16, 87

[Jac99] Bart Jacobs. Categorical Logic and Type Theory. Number 141 in
Studies in Logic and the Foundations of Mathematics. North Holland,
Amsterdam, 1999. 12, 17

[Joh77] Peter T. Johnstone. Topos theory. Academic Press [Harcourt Brace
Jovanovich Publishers], London, 1977. London Mathematical Society
Monographs, Vol. 10. 17

[Joh02] Peter T. Johnstone. Sketches of an Elephant: A Topos Theory Com-
pendium: Volumes 1 and 2. Number 43 in Oxford Logic Guides. Oxford
Science Publications, 2002. 12, 17, 188, 190

[JS91] André Joyal and Ross Street. The geometry of tensor calculus. I. Adv.
Math., 88(1):55–112, 1991. 11

[Lam69] Joachim Lambek. Deductive systems and categories. II. Standard
constructions and closed categories. In Category Theory, Homology
Theory and their Applications, I (Battelle Institute Conference, Seattle,
Wash., 1968, Vol. One), pages 76–122. Springer, Berlin, 1969. 15

[Law63] F. William Lawvere. Functorial semantics of algebraic theories. Proc.
Nat. Acad. Sci. U.S.A., 50:869–872, 1963. 77, 144

[Law70] F. William Lawvere. Equality in hyperdoctrines and comprehension
schema as an adjoint functor. In Applications of Categorical Algebra
(Proc. Sympos. Pure Math., Vol. XVII, New York, 1968), pages 1–14.
Amer. Math. Soc., Providence, R.I., 1970. 163, 164, 173

[Law06] F. William Lawvere. Adjointness in foundations. Repr. Theory Appl.
Categ., (16):1–16 (electronic), 2006. Reprinted from Dialectica 23 (1969).
173

[Lei04] Tom Leinster. Higher operads, higher categories, volume 298 of London
Mathematical Society Lecture Note Series. Cambridge University Press,
Cambridge, 2004. 16, 17, 87, 91, 105, 149, 150

[Lei14] Tom Leinster. Basic category theory. Cambridge University Press, 2014.
17

[LS88] J. Lambek and P. J. Scott. Introduction to Higher-Order Categori-
cal Logic, volume 7 of Cambridge Studies in Advanced Mathematics.
Cambridge University Press, 1988. 12

BIBLIOGRAPHY 223

[LS16] Daniel Licata and Michael Shulman. Adjoint logic with a 2-category of
modes. LFCS ’16. Available at http://dlicata.web.wesleyan.edu/

pubs/ls15adjoint/ls15adjoint.pdf, 2016. 19

[May72] J. Peter May. The geometry of iterated loop spaces. Springer-Verlag,
Berlin, 1972. Lectures Notes in Mathematics, Vol. 271. 150

[McL92] Colin McLarty. Elementary categories, elementary toposes, volume 21
of Oxford Logic Guides. The Clarendon Press Oxford University Press,
New York, 1992. Oxford Science Publications. 17, 190

[ML98] Saunders Mac Lane. Categories For the Working Mathematician, vol-
ume 5 of Graduate Texts in Mathematics. Springer, second edition, 1998.
17

[MLM94] Saunders Mac Lane and Ieke Moerdijk. Sheaves in geometry and logic:
a first introduction to topos theory. Universitext. Springer-Verlag, New
York, 1994. Corrected reprint of the 1992 edition. 17, 190

[MR77] M. Makkai and G.E. Reyes. First Order Categorical Logic, volume 611
of Lecture Notes in Mathematics. Springer-Verlag, 1977. 12

[nLa16] nLab authors. computad. http://ncatlab.org/nlab/show/computad,
Jul 2016. 64, 74

[PG00] A. M. Pitts and M. J. Gabbay. A metalanguage for programming with
bound names modulo renaming. In R. Backhouse and J. N. Oliveira,
editors, Mathematics of Program Construction. 5th International Con-
ference, MPC2000, volume 1837 of Lecture Notes in Computer Science,
pages 230–255. Springer, July 2000. 216

[Sel11] Peter Selinger. A survey of graphical languages for monoidal cate-
gories. In Bob Coeke, editor, New Structures for Physics, chapter 4.
Springer, 2011. Available at http://www.mscs.dal.ca/~selinger/

papers.html#graphical and arXiv:0908.3347. 11

[SL+10] Michael Shulman, Peter LeFanu Lumsdaine, et al. What is a theory?
Blog post and discussion available at https://golem.ph.utexas.edu/
category/2010/07/what_is_a_theory.html, 2010. 77

[Str83] Ross Street. Absolute colimits in enriched categories. Cahiers Topologie
Géom. Différentielle, 24(4):377–379, 1983. 118

[Wad15] Philip Wadler. Propositions as types. Communications of
the ACM, 2015. http://homepages.inf.ed.ac.uk/wadler/papers/

propositions-as-types/propositions-as-types.pdf. 131

[Wyl91] Oswald Wyler. Lecture notes on topoi and quasitopoi. World Scientific,
1991. 190

http://dlicata.web.wesleyan.edu/pubs/ls15adjoint/ls15adjoint.pdf
http://dlicata.web.wesleyan.edu/pubs/ls15adjoint/ls15adjoint.pdf
http://ncatlab.org/nlab/show/computad
http://www.mscs.dal.ca/~selinger/papers.html#graphical
http://www.mscs.dal.ca/~selinger/papers.html#graphical
https://golem.ph.utexas.edu/category/2010/07/what_is_a_theory.html
https://golem.ph.utexas.edu/category/2010/07/what_is_a_theory.html
http://homepages.inf.ed.ac.uk/wadler/papers/propositions-as-types/propositions-as-types.pdf
http://homepages.inf.ed.ac.uk/wadler/papers/propositions-as-types/propositions-as-types.pdf

	Introduction
	Appetizer: inverses in group objects
	On syntax and free objects
	On type theory and category theory
	Expectations of the reader

	Unary type theories
	Posets
	Categories
	Primitive cuts
	Cut admissibility

	Meet-semilattices
	Sequent calculus for meet-semilattices
	Natural deduction for meet-semilattices

	Categories with products
	Categories with coproducts
	Universal properties and modularity
	Presentations and theories
	Group presentations
	Category presentations
	-presentations
	Theories

	Simple type theories
	Towards multicategories
	Introduction to multicategories
	Multiposets and monoidal posets
	Multiposets
	Sequent calculus for monoidal posets
	Natural deduction for monoidal posets

	Multicategories and monoidal categories
	Multicategories
	Monoidal categories

	Adding products and coproducts
	Some generalized multicategories
	Intuitionistic logic
	S-monoidal lattices
	Heyting algebras
	Natural deduction and logic

	Simply typed -calculus
	Finite-product theories
	Symmetric monoidal categories

	First-order logic
	Predicate logic
	Structural rules and simple rules
	The universal quantifier
	The existential quantifier
	Equality
	First-order theories

	First-order hyperdoctrines
	Hyperdoctrines of subobjects
	Horn hyperdoctrines from finite limits
	Regular categories
	Coherent categories
	Heyting categories

	Finite-limit theories
	Indexed monoidal categories

	Deductive systems
	Trees and free algebras
	Indexed trees
	Free algebras with axioms
	Rules and deductive systems
	Terms
	Variable binding and -equivalence

